0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Alle anzeigen

Technologien und technischen Merkmalen unserer Produkte

4K-Displays
Retrofit-Displays
Schutzklasse IP69K
Touchscreen-Technologie: DST (Biegewellen)
Touchscreen-Technologie: Infrarot (IR) — Gitter
Touchscreen-Technologie: Multi-Touch
Touchscreen-Technologie: Oberflächen Kapazitiv
Touchscreen-Technologie: Optisch (Kamera)
Touchscreen-Technologie: Projiziert Kapazitiver Touch (PCAP)
Touchscreen-Technologie: Resistiv (4-, 5-, 7- and 8-Draht)
Touchscreen-Technologie: SAW (Akustische Oberflächenwellen)

4K-Displays

Die Vorzüge von 4K

Höchste Auflösung

Mit ca. 4.000 Pixel horizontal (4K) und 2.000 Pixel vertikal (2K) entspricht die 4K-Technologie 4-facher Full-HD-Auflösung und bietet exzellente Kontrastwerte und Farbendarstellung. Der Begriff 4K bezeichnet hierbei beide verfügbaren hochauflösenden Technologien: Ultra HD (3.840 × 2.160) und / oder
4K (4.096 × 2.160).

Anwendungen in der Medizin

4K-Monitore revolutionieren medizinische Anwendungen durch ihre Fähigkeit, kleinste Details sichtbar zu machen sowie extrem scharf darzustellen. Das ist vor allem nützlich in beispielsweise OP-Anwendungen und der Endoskopie, wo eine Full HD Auflösung oft nicht mehr ausreichend ist.

Canvys 4K Series: 32 inch – Front View Black

Anwendungen in der Industrie

4K-Displays sind beispielsweise ideal für die industrielle Endoskopie bei der Inspektion von Maschinen und Anlagen. Durch die hohen Auflösungen können sogenannte Mikrorisse sichtbar gemacht verwenden, welche zuvor mit Full HD nich zu sehen waren.

Multi-Modalität (Multi-Modality)

Die 4K-Monitore erlauben es, durch verschiedene Darstellungsmodi mehrere Bilder gleichzeitig zu zeigen. Abhängig vom Modell und den verfügbaren Schnittstellen können auf einem 4K-Monitor bis zu vier verschiedene Inhalte von bis zu vier unterschiedlichen Quellen dargestellt werden. So kann medizinisches Personal auf nur einem Bildschirm und in allerhöchster Auflösung die Live-Bilder der Endoskopie-Kamera sehen und gleichzeitig weitere wichtige Informationen zum Patienten im Auge behalten.

Des Weiteren erlaubt es z.B. die Picture by Picture Funktion (PBP), für Vergleichszwecke zwei Bilder nebeneinander und in höchster Auflösung zu betrachten.

Ferner hat bei Multi-Modality-Anwendungen ein einzelner Monitor den Vorteil, dass Kalibrierung und Gammaeinstellung nur einmal vorgenommen werden müssen.

High Brightness

Neben einer hohen Auflösung spielen auch ein hoher Kontrast und eine intensive Farbdarstellung eine Rolle. 4K-High-Brightness-Monitore erfüllen auch die weiteren Anforderungen, welche besonders in bestimmten bildgebenden Verfahren der Medizin und Industrie von großer Bedeutung sind. Auch bei starkem Umgebungslicht ist eine durchweg optimale Sichtbarkeit gewährleistet.

Optical Bonding

Das technisch aufwendige Verfahren des Optical Bondings sorgt für eine Optimierung der Bildqualität in Bezug auf Kontrast und Farbdarstellung. Das Verkleben von LCD-Modul mit der Touch- oder Schutzscheibe sorgt für eine brillante Bildgebung. Die Vorteile sind ein klareres Bild, die Blendung wird vermindert und eine größere Bruchsicherheit (bei mechanischem Druck) ist gegeben.

Merkmale der Canvys 4K-Displays

  • Serie erhältlich in den Diagonalen 27” – 55” (1)
  • 27" und 32" optional mit High-Brightness-Panel
  • Optical Bonding erhältlich bis zu Diagonalen von 32"
  • bis zu vier verschiede Eingangsquellen ermöglichen verschiedene Darstellungsmodi in hoher Auflösung (PIP, POP, PBP)
  • modernes und leicht zu reinigendes True Flat Design
  • Customizing-Möglichkeiten: Branding (Logo-Aufdruck), Boot-Logo, Schutzglas, Sicherheitsglas, …
  • optional Projiziert Kapazitiv Touch (PCAP) — bedienbar mit bis zu 10 Fingern und Latexhandschuhen
  • medizinisch zertifizierte und industrielle Lösungen erhältlich
  • Langzeitverfügbarkeit

(1) Einige Diagonalen unterliegen Mindestbestellmengen – Bitte kontaktieren Sie uns...

Typische Märkte / Anwendungen

Medizin

Industrie


 

Retrofit-Displays

Warum Retrofit Displays?

Ihre Anwendung ist altbewährt und funktioniert noch einwandfrei. Doch die bildgebende Hardware ist mittlerweile veraltet. Es ist nur noch eine Frage der Zeit, bis diese Geräte ausfallen werden. Und wenn diese Bildschirme nicht unmittelbar vom Gerätesterben (Obsoleszenz) bedroht sind, entsprechen sie nicht mehr neuesten Anforderungen an eine HMI (Human Machine Interface) oder modernen Bedienkonzepten der Gegenwart. Um die weitere Funktion Ihrer immer noch rentablen Anwendung zu sichern, sind Sie gefordert, diese Monitore zu ersetzen!

Die Herausforderung, die es nun zu meistern gilt

Ihre seit Jahren zuverlässig laufenden Software-Anwendungen sind sicherlich optimiert auf die früheren klassischen Standard-Bildformate 4:3 oder 5:4. Der Trend bei der Monitorentwicklung ist jedoch, dass dieses "alte" Format immer mehr vom Markt verschwindet und überwiegend großformatige Displays im Bildverhältnis 16:9 (oder auch das mittlerweile schwindende 16:10 Format) erhältlich sind. Eine Portierung Ihrer Anwendungen in die neuen Formate würde bedeuten, dass diese komplett neu programmiert werden müssen. Für einige Unternehmen ist das zu teuer und vom noch zu erwartenden ROI (Return On Investment) der laufenden Anwendungen schlichtweg unsinnig

Illustration 1: Retrofit Explanation

Canvys R-Serie als Retrofit-Lösung

An diesem Punkt setzt Canvys seine Retrofit-LFM-Serie an: Die neuentwickelten Geräte entsprechen modernster Displaytechnologie, sind jedoch in den klassischen Formaten 4:3 oder 5:4 erhältlich. So ermöglichen diese Monitore den Einsatz in eben geschildertem Fall.

Beispiel für das moderne Bedienkonzept

Ein integrierter projiziert kapazitiver (PCAP) oder resistiver Touchscreen stellt ein HMI (Human Machine Interface) bereit, welches ein modernes Arbeiten mit Finger- oder per Handschuhbedienung ermöglicht. Mit zusätzlichen Funktionen wie True-Flat-Design und vielen weiteren Anpassungsoptionen erhalten zuvor angesprochene Kunden ein Produkt, welches den ROI nochmals steigert.

Illustration 2: Retrofit Display

Retrofit als Langzeitversorgungskonzept für Ihr Business / Ihre Produktstrategie

Im OEM-Geschäft müssen individuelle Produkte und Lösungen für die Medizin- und Industriebranche langfristig angelegten Konzepten entsprechen. Dies hat Canvys in seinem Retrofit-Konzept als eine unerlässliche Notwendigkeit berücksichtigt.

Auch nach einer etwaigen Produktabkündigung (EOL – End of Life) gewährleisten wir Ihnen, dass Sie Ihr Serviceversprechen gegenüber Ihren Kunden gemäß den bestehenden Anforderungen langfristig einhalten können. Denn Canvys stellt sicher — evtl. durch die Entwicklung eines Nachfolgeprodukts — dass Sie Ihre Maintenance- und Serviceverpflichtung noch für sieben bis zehn Jahre in Form, Fit and Function abdecken können.

Zusammenfassung der Vorteile beim Einsatz von Retrofit-Displays der R-Serie

  • verlängert den Lebenszyklus Ihrer Anwendungen und Produkte
  • vermeidet die Notwendigkeit von Investitionen für grundlegende Anpassungen
  • Maintenance- und Serviceverpflichtung noch für mind. sieben bis zehn Jahre in Form, Fit and Function abgedeckt
  • spart Zeit und Geld
  • nutzt die Vorteile der moderner Displaytechnologie
  • bessere Verfügbarkeit der Komponenten im Reparaturfall
  • Retrofit-Displays sind umweltfreundlicher als alte Modelle

 

Schutzklasse IP69K

Definition von IP69K nach EN 60529 und 40 050 Teil 9:

Die Ziffer 6 bedeutet völlige Dichtheit und somit den Schutz der elektrischen Ausrüstung gegen Eindringen von Festkörpern und Staub.
9K bezeichnet den Schutz gegen das Eindringen von Wasser bei Hochdruck- oder Dampfstrahlreinigung.

Canvys bietet auf Anfrage Displays an, welche je nach Notwendigkeit und Anforderung der Schutzklasse IP69K entsprechen. Diese Monitore können optional mit einem projiziert-kapazitivem (PCAP) Touchscreen ausgerüstet werden. Dadurch sind diese multitouchfähig (Zwei- oder Mehrfingerbedienung mit der bloßen Hand oder mit Latexhandschuhen möglich). Für die nötige Robustheit sorgt ein bis zu vier Millimeter dickes Einscheiben- bzw. Verbundsicherheitsglas. Der Temperatureinsatzbereich liegt zwischen -20 bis +70 °C.

In der Lebensmittel-, Chemie- und Pharmaindustrie unterliegen Fertigungsanlagen höchsten Anforderungen an Hygiene und Dichtigkeit. Insbesondere bei Prozessen, in denen die Güter direkt mit den Herstellungsmaschinen in Berührung kommen, gelten höchste Ansprüche hinsichtlich Reinigungsfreundlichkeit und Robustheit. Hierbei kommen bei den notwendigerweise häufigen Reinigungsvorgängen sowohl Dampfstrahlgeräte als auch diverse Chemikalien zum Einsatz, und es herrschen hohe Temperaturschwankungen. Alle diese Faktoren erfordern eine entsprechend robuste Abdichtung der eingesetzten Monitore und sind mit einem sehr hohen Entwicklungsaufwand verbunden.

In Zusammenarbeit mit Partnerunternehmen haben die Canvys-Entwicklungsingenieure nun eine geeignete Verklebetechnik entwickelt. Mit Hilfe dieser Technik ist der Displayhersteller in der Lage, entsprechend die Displays in Edelstahl- oder Druckgussgehäuse einzubauen, um die IP69K Spezifikation zu erfüllen.

Somit können diese speziellen Monitore z.B. auch bei Getränkeabfüllanlagen, bei der Arzneimittelherstellung, in Waschanlagen oder in der Tiefkühlindustrie eingesetzt werden.


 

Dispersive Signal Technology (DST) — Biegewellen

Sensormaterialien

Glassubstrat, piezoelektrische Messwandler

Funktionsprinzip

  • Durch Berührung (Touch) entsteht eine Schwingung (Biegewelle), die sich durch das Medium des Glassubstrats hindurch ausbreitet.
  • Die Biegewellen wandern zu den Sensorrändern und werden durch piezoelektrische Rezeptoren im Randbereich wahrgenommen.
  • Eine Elektronik berechnet die Berührungsstelle anhand von Algorithmen oder mit Hilfe von Signalvergleichsreferenzen.

Illustration 1: Dispersive Signal Technology

Pro und Kontra

ProKontra
Unkritisch für OberflächenverschmutzungenNur wenige bedeutende Anbieter
Berührung mit bloßem Finger, behandschuhten Finger oder EingabestiftAuf einen auflösbaren Punkt mit Gestenerkennung beschränkt
Lichtdurchlässigkeit > 90 %
Völlig flache, rahmenlose Vorderseite möglich

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Infrarot (IR) — Gitter

Sensormaterialien

Glas- oder Acrylsubstrat, Kantenabschlussrahmen, LED-Matrix

Funktionsprinzip

  • LEDs erzeugen ein Gitter aus X- und Y-Infrarotstrahlen, die oberhalb des Displays projiziert und von Photorezeptoren am gegenüberliegenden Rand wahrgenommen werden.
  • Eine Berührung wird erkannt, wenn ein Finger oder Eingabestift den Strahl blockiert, so dass er nicht zu den IR-Detektoren gelangen kann.
  • Der Controller überwacht kontinuierlich die X- und Y-Achsen und erkennt blockierte IR-Detektoren. Anhand einer Triangulation wird dann die Berührungsposition errechnet.

Illustration 1: Infrared Touch

Pro und Kontra

ProKontra
Funktioniert auch mit Kratzern und OberflächenverschleißFeste Schmutzteilchen, bewegliche Flüssigkeiten oder Obstruktionen können eine falsche Berührungsmeldung verursachen und Totzonen erzeugen, bis sie vollständig entfernt sind
Berührung mit bloßem Finger, behandschuhten Finger oder EingabestiftLässt sich nur schwer skalieren (neue Anordnung erforderlich)
Lichtdurchlässigkeit in der Regel 90 - 92 %Strahlabstand schränkt Genauigkeit und Stiftbreite ein
Die Berührung findet ein wenig über der eigentlichen Oberfläche statt, wodurch es zu Berührungsparallaxen oder einer unbeabsichtigten Berührungsreaktion kommen kann
Erfordert eine Rahmenkonstruktion zur Unterbringung der LEDs und Sensoren
Auf zwei oder drei auflösbare Berührungen beschränkt

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Multi-Touch

Was ist Multi-Touch?

Obwohl die berührungsempfindliche Bedienoberfläche ("Touchscreen") dank einer wachsenden Zahl Touchscreen-fähiger Konsumprodukte zunehmend ins Bewusstsein der Verbraucher rückt, sind die Besonderheiten und die Vielfalt der Touch-Technologien ein Thema, das von den Nutzern der Gestensteuerung noch nicht vollständig verstanden wird. Aufgrund der Produktpositionierung dutzender Touch-Technologie-Hersteller, der Filterung von Bloggern und der Antworten, die durch die breite Touch-Gemeinde im Internet gepostet werden, existieren widersprüchliche Aussagen darüber, wie bestimmte Technologien funktionieren und welche Touch-Fähigkeiten jede Technologie wirklich besitzt. Um eine Grundlage für einen Vergleich der Technologien zu schaffen, werden hier die verschiedenen Eingabemöglichkeiten und die Touch-Technologien für diese Eingabeformen vorgestellt.

Image showing Multi Touch Application

Image showing Multi Touch Application

Einmalige Berührung (Single Touch)

Von einem "Single Touch" spricht man, wenn ein Finger oder Eingabestift ein Berührungsereignis auf der Oberfläche eines berührungsempfindlichen Sensors oder innerhalb eines berührungsempfindlichen Feldes erzeugt, das durch den Touch-Controller erkannt wird. Die Software kann dann die X,Y-Koordinaten der Berührung berechnen. Diese Technologien wurden bereits in Millionen von Geräten integriert und sind normalerweise nicht in der Lage, im Rahmen ihrer Standardkonfiguration mehrere Berührungspunkte gleichzeitig zu erkennen und aufzulösen.

Einmalige Berührung mit Stifteingabe (Single Touch with Pen Input)

Die Kategorie des "Single Touch with Pen Input" kann von einem einfachen, inaktiven Zeiger oder Eingabestift bis zu komplexen, aktiven kabelgebundenen Stiften reichen. Inaktive Stifte ermöglichen die gleichen Eingabeeigenschaften wie ein Finger, nur mit größerer Zeigegenauigkeit, während kompliziertere aktive Stifte mehr Steuerungsfunktionen und Nutzungsmöglichkeiten für das Touchsystem erlauben, wie zum Beispiel die Möglichkeit zum Zeichnen und zur Handflächenzurückweisung oder zum Erkennen von Mausereignissen.

Einmalige Berührung mit Geste (Single Touch with Gesture)

Aufgrund von Verbesserungen, die viele Single-Touch-Technologien an Firmware, Software und Hardware hervorgebracht haben, sind deren Berührungsfunktionen erweitert worden. Einige Touch-Technologien nutzen höherentwickelte Verarbeitungsfähigkeiten, um zu "detektieren" oder zu erkennen, dass ein zweites Berührungsereignis stattfindet, was als ein "Gestenereignis" bezeichnet wird. Da Single-Touch-Systeme nicht in der Lage sind, die genaue Position des zweiten Berührungsereignisses aufzulösen, stützen sie sich auf Algorithmen zum Interpretieren oder Vorwegnehmen der beabsichtigten Gestenereignis-Eingabe. Gängige Branchenbegriffe für diese Funktion sind Zweifinger-Gesten, Dual Touch, Dualsteuerung und Gesten-Touch.

Doppelberührung (Two Touch)

"Two Touch" bezeichnet ein berührungsempfindliches System, das zwei räumlich voneinander getrennte, aber zeitgleiche Berührungsereignisse detektieren und auflösen kann. Das einfachste Beispiel für eine Two-Touch-Fähigkeit ist das gleichzeitige Ziehen zweier paralleler Linien auf dem Bildschirm. Two-Touch-Systeme können auch Gesten unterstützen.

Mehrfachberührung (Multi-Touch)

Multi-Touch bezeichnet die Fähigkeit eines berührungsempfindlichen Systems, gleichzeitig mindestens drei Berührungspunkte zu erkennen und aufzulösen. Alle drei oder mehr Berührungen werden erkannt und vollständig aufgelöst, was zu einem extrem verbesserten Nutzungserlebnis führt. Vor allem wegen der Geschwindigkeit, der Effizienz und der intuitiven Bedienbarkeit dieser Technologie sehen viele in Multi-Touch eine in Zukunft weit verbreitete Standardschnittstelle.

Vergleich der Berührungsfähigkeiten

Touch-TechnologieSingle TouchSingle Touch/PenSingle Touch/GestureTwo TouchMulti Touch
Biegewelle (DST)jajeder EingabestiftGesten-Upgradeneinnein
Infrarot (IR)jaspezieller EingabestiftGesten-Upgradejaja
Optischjaspezieller EingabestiftGesten-Upgradejaja*
Projiziert Kapazitivjaspezieller EingabestiftStandardjaja
Resistivjajeder EingabestiftGesten-Upgradenein**nein
Surface Acoustic Wave (SAW)jaspezieller EingabestiftGesten-Upgradeneinnein
Oberflächen Kapazitivjajeder EingabestiftGesten-Upgradeneinnein

* Optische Technologie mit mindestens 2 Kameras. Kann für Two-Touch und Multi-Touch mit Gesten-Upgrades geeignet sein.

** Widerstandsmatrix-Technologie. Kann für Two-Touch und Multi-Touch geeignet sein, ist aber nicht weit verbreitet.

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Oberflächen Kapazitive Technologie

Sensormaterialien

Glassubstrat, transparente Metalloxidbeschichtung

Funktionsprinzip

  • Spannung wird an die Ecken des Touchscreen angelegt.
  • Eine Elektrodenstruktur entlang des Touchscreen-Umfangs verteilt die Spannung so, dass ein gleichmäßiges elektrisches Feld auf der leitfähigen Oberfläche entsteht.
  • Eine Berührung mit dem Finger zieht eine exakte Strommenge von der Oberfläche ab und wird durch den Controller gemessen.
  • Die relative Größe des Stroms verhält sich umgekehrt proportional zur Entfernung vom Kontaktpunkt zu den Ecken des Touchscreen.
  • Die Verhältnisse der vier Eckströme werden berechnet, um die X, Y-Koordinate zu berechnen.

Illustration 1: Surface Capacitive

Pro und Kontra

ProKontra
Widersteht Schmutzteilchen und beweglichen Flüssigkeiten auf dem Schirm und funktioniert weiterhin über die gesamte TouchscreenflächeUnterstützt nur Finger oder kabelgebundenen Stift
Eine ganz leichte Fingerberührung reicht zur AktivierungStarke Kratzer können die Funktion innerhalb des beschädigten Bereichs beeinträchtigen
Technologie mit der schnellsten ReaktionszeitAuf einen auflösbaren Punkt mit Gestenerkennung beschränkt
Lichtdurchlässigkeit typischerweise 88 % bis 92 %

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Optische Technologie (Kamera)

Sensormaterialien

Glassubstrat, optische Zeilenabtastsensoren, Leuchtband

Funktionsprinzip

  • In den beiden oberen Ecken oder in allen 4 Ecken des Substrats sind Minikameras angebracht.
  • Ein beleuchteter Rand oder reflektierende Ränder auf den drei gegenüberliegenden Seiten projizieren ein gleichmäßiges Infrarotfeld knapp oberhalb der Glasoberfläche.
  • Eine Berührung wird erkannt, wenn ein Finger oder Objekt das Licht blockiert, so dass es nicht zu den Kameras gelangen kann.
  • Der Controller verarbeitet die optischen Informationen und berechnet die X, Y-Koordinaten.

Illustration 1: Optical Touch

Pro und Kontra

ProKontra
Funktioniert auch mit Kratzern und OberflächenverschleißBewegliche Flüssigkeiten oder feste Schmutzteilchen können falsche Berührungsmeldungen oder Funktionsausfälle verursachen, bis sie vollständig entfernt sind
Berührung mit bloßem Finger, behandschuhten Finger oder EingabestiftErfordert eine Rahmenkonstruktion zur Unterbringung des am Rand positionierten Kamerasystems
SkalierbarSystemdicke in der Regel 2 - 3,5 mm zusätzlich zur Dicke des Glases
Lichtdurchlässigkeit in der Regel > 90 %Die Berührung findet ein wenig über der eigentlichen Oberfläche statt
Auf zwei auflösbare Punkte mit zwei Kameras beschränkt; drei oder mehr auflösbare Punkte mit vier Kameras

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Projiziert Kapazitiver Touch (Projected Capacitive Touch)

Einleitung

Die projiziert-kapazitive Technologie (Projected Capacitive Technology, pcap touch) entwickelt sich rasend schnell zu einer der wichtigsten Touch-Technologien für immer mehr Anwendungen von Consumer-Geräten bis hin zu kommerziellen Applikationen für Retail und Gaming Signage. Da touchfähige mobile Geräte von immer mehr Nutzern verwendet werden, geben sich Verbraucher und Experten längst nicht mehr mit einfacher Single-Touch-Funktionalität zufrieden und erwarten statt dessen berührungsaktive Anwendungen mit Multi-Touch- und Multi-User-Fähigkeiten. Obwohl der Begriff „projiziert-kapazitive Technologie (pcap touch)“ relativ breit gefasst ist, sollen in diesem Dokument nur zwei der wichtigsten Methoden zur Berührungserkennung – Self Capacitance und Mutual Capacitance – untersucht und ihre unterschiedlichen Einsatzmöglichkeiten erörtert werden. Jede dieser Erkennungsmethoden ist für ganz bestimmte Anforderungen ausgelegt und die Kenntnis ihrer jeweiligen Stärken und Eignungen kann Hard- und Softwareentwicklern dabei helfen, für jede Anwendung genau die richtige Touch-Technologie auszuwählen.

Illustration 1: PCAP – How Self Capacitance Works

Funktionsweise der projiziert-kapazitiven Technologie (PCAP Touch)

Die projiziert-kapazitive Technologie (PCAP) erkennt Berührungen, indem sie die elektrische Kapazität an jeder adressierbaren Elektrode misst. Wenn sich ein Finger oder leitfähiger Stift einer Elektrode nähert, wird ihr elektromagnetisches Feld gestört und ihre elektrische Kapazität verändert. Diese Veränderung kann von der Elektronik gemessen und in X,Y-Koordinaten umgewandelt werden, die dann vom System zur Berührungserkennung genutzt werden können. Bei den Methoden zur Berührungserkennung werden zwei Haupttypen unterschieden, die als Self Capacitance (Eigenkapazität) und Mutual Capacitance (Gegenkapazität) bezeichnet werden [siehe Abbildungen 1 und 2] und verschiedene Vor- und Nachteile besitzen.

Illustration 2: PCAP – How Mutual Capacitance Works

Self-Capacitance

Die erste Erkennungsmethode beruht auf der Eigenkapazität. Dabei misst die Elektronik den an jeder Elektrode anliegenden Strom gegenüber dem Erdungsniveau. Für die Berührungserkennung gibt es zwei Möglichkeiten, wobei die Elektroden entweder als Multi-Pad oder in Zeilen und Spalten angeordnet sein können [siehe Abbildungen 3 und 4]. Bei der Multi-Pad-Konstruktion ist jede Elektrode bzw. jedes „Pad“ einzeln von der Elektronik adressierbar, weshalb eine individuelle Verbindung zwischen Elektrode und Controller erforderlich ist. Aus diesem Grund ist bei Self-Capacitance-Systemen mit Multi-Pad eine Multi-Touch-Steuerung zwar möglich, da aber jedes Pad einzeln adressiert werden muss, ist die Umsetzung für Displays mit mehr als 3,5 Zoll Bildschirmdiagonale sehr schwierig. Bei der Anordnung in Zeilen und Spalten stellt jede Zeile und jede Spalte eine Elektrode dar und wird einzeln vom Controller adressiert. Obwohl der Schnittpunkt einer Zeile und einer Spalte ein eindeutiges Koordinatenpaar darstellt, kann die Elektronik nur einzelne Elektroden, nicht aber jeden einzelnen Schnittpunkt erfassen. Daher sind diese Systeme auf Single- und Dual-Touch-Erkennung beschränkt, wobei sogenannte „Ghost Points“ problematisch sein können. Diese sind das Ergebnis imaginärer oder falscher Schnittpunkte an Stellen, die nicht dem Berührungspunkt entsprechen [siehe Abbildung 5].

Um in Self-Capacitance-Systemen Berührungen zu erfassen, scannt die Elektronik alle Elektroden und misst den an ihnen anliegenden Strom, um den Ruhestrom zu bestimmen. Wenn sich ein Finger oder leitfähiger Stift dem Bildschirm nähert, koppelt er sich an die Elektroden und erhöht die Stromaufnahme, während er einen Erdungspfad bildet. Der Controller ermittelt den Berührungspunkt, indem er feststellt, welche Zeile und Spalte der Berührungsstelle am nächsten ist. Die Genauigkeit des Verfahrens wird durch Interpolation erhöht.

Mutual Capacitance

Unter Mutual Capacitance (Gegenkapazität) versteht man die beabsichtigte oder unbeabsichtigte elektrische Kapazität zwischen zwei geladenen Gegenständen. Bei projiziert-kapazitiven Touchscreens (pcap touch) wird absichtlich eine Gegenkapazität zwischen den sich im Umfeld der einzelnen Schnittpunkte befindlichen Elementen von Zeilen und Spalten aufgebaut [siehe Abbildung 6]. Auf diese Weise kann die Systemelektronik jeden Knoten (Schnittpunkt) individuell messen und so mit einem einzigen Scandurchlauf mehrere Berührungen auf dem Bildschirm erfassen.

Berührt man den Bildschirm in der Nähe eines Schnittpunkts, wird ein Teil der Gegenkapazität zwischen Zeile und Spalte an den Finger gekoppelt und die von der Elektronik gemessene elektrische Kapazität des Schnittpunkts reduziert. Diese reduzierte elektrische Kapazität überschreitet die von der Elektronik festgelegte „Berührungsschwelle“ und signalisiert dem System, dass eine Berührung stattgefunden hat.

Aufbau kapazitiver Touchscreens

Für die Konstruktion kapazitiver Touchscreens stehen mehrere Techniken zur Verfügung, darunter die Konstruktion aus Leitungsdrähten oder das Auftragen transparenter leitfähiger Materialien wie Indiumzinnoxid (ITO) auf eine „Sandwich-Filmschicht“ aus Polyester (PET) oder ein Glassubstrat.

Illustration 7: PCAP – ITO Sensor Construction

Konstruktion aus Leitungsdrähten

Die Konstruktion aus Leitungsdrähten bietet ein höheres Signal-Rausch-Verhältnis als die ITO-Konstruktion. Allerdings sind die Leitungsdrähte normalerweise mit bloßem Auge sichtbar. Sie können entweder rasterförmig angeordnet und durch eine dielektrische Schicht voneinander getrennt oder speziell als einzelne Schicht ausgelegt sein, wobei die Elektroden mit einer Schutzschicht aus Glas oder PET abgedeckt sind.

Indiumzinnoxid (ITO)

Durch das Auftragen von Indiumzinnoxid (ITO) auf eine Oberfläche aus Glas oder PET lassen sich in der Regel Flächenwiderstände im Bereich von 50-200 Ohm pro Flächenquadrat erreichen. Flächenwiderstand und Lichtdurchlässigkeit sind direkt proportional zueinander, d. h. je höher der Widerstand desto höher die Lichtdurchlässigkeit. Das ist darauf zurückzuführen, dass die ITO-Schicht typischerweise umso dünner ist, je höher die angestrebte Lichtdurchlässigkeit sein soll.

Die Sichtbarkeit von Rastern mit niedrigerem Widerstand kann unter anderem durch Index-Matching verringert werden. Das für die Matrix- oder Rautenanordnung kapazitiver Systeme erforderliche Raster kann mit Verfahren wie Laserätzen, Fotolithographie sowie zahlreichen proprietären Methoden erstellt werden. Bei Systemen mit ITO-Beschichtung müssen die leitfähigen Schichten gegeneinander isoliert werden.

Sensorkonstruktion

Für den Einsatz von Polyesterfilm (PET-Film) für projiziert-kapazitive Systeme gibt es drei Möglichkeiten: Dabei wird ein leitfähiges Raster entweder beidseitig auf eine einzige Platte oder einseitig auf zwei separate Platten aufgedruckt, die dann zu einer Schicht verpresst werden. Alternativ können zwei leitfähige Raster einseitig auf eine Platte aufgedruckt und durch eine dielektrische Schicht mit leitfähigen Brücken voneinander getrennt werden. Konstruktionen mit nur einer Schicht können die Displaydicke reduzieren, was vor allem für kompakte Mobiltelefondisplays von Bedeutung ist, erfordern aber zwei Arbeitsdurchgänge (Imaging) für ein und dieselbe Schicht. Konstruktionen mit zwei Schichten lassen sich in einem Arbeitsdurchgang erstellen, dafür müssen die beiden PET-Schichten jedoch zum Verpressen präzise in einer geraden Linie angeordnet werden [siehe Abbildung 7]. Bei einseitig in zwei Arbeitsdurchgängen bedruckten Platten weist das Überbrückungsraster mitunter optische Anomalien auf, die mit bloßem Auge sichtbar sind.
Systeme mit Glasplatten können eine ähnliche Konstruktion aufweisen wie Systeme mit PET-Schichten. Dabei hat Glas den Vorteil, dass es hinsichtlich Optik und Härte oftmals besser abschneidet als PET. Der Nachteil glasbeschichteter Sensorschichten besteht indes darin, dass für jede Sensorgröße oder -konstruktion eine eigene Bildmaske erforderlich ist. Dies kann insbesondere für niedrigere Produktionsmengen von Nachteil sein und bietet weniger Flexibilität bei der individuellen Anpassung und Konstruktion von Sensoren, da die Kosten für neue Masken zwischen $ 40.000 und $ 100.000 liegen können. Darüber hinaus können PET-Systeme in hochproduktiven Rolle-zu-Rolle-Verfahren gefertigt werden, das Kostensenkungen und Flexibilitätssteigerungen ermöglicht, während für glasbasierte Lösungen einzelne Glasplatten mit einer begrenzten Anzahl an Sensoren pro Platte erforderlich sind.

Strukturierung

Für die Herstellung projiziert-kapazitiver Sensoren werden hauptsächlich matrix- und rautenförmig angeordnete Raster verwendet. Rautenförmige ITO-Raster können einheitlicher gedruckt werden als Matrixraster. Auf diese Weise wird die Impedanz des gedruckten Rasters reduziert, was zu einer Verbesserung der optischen Eigenschaften beiträgt und die Systemleistung insgesamt optimiert.
Einige Touch-Technologien, darunter oberflächenkapazitive Touchscreens, haben eine uniforme, leitfähige Oberflächenbeschichtung, die eine einheitliche und weniger sichtbare Übertragungskonstante ermöglicht. Obwohl Indiumzinnoxid transparent und leitfähig ist, sind bei gerasterten ITO-Schichten Unterbrechungen im Raster erkennbar, die durch Änderungen der Lichtrefraktion hervorgerufen werden. Die Lichtbrechung kann jedoch durch raffinierte Index-Matching-Verfahren so stark eingeschränkt werden, dass das Raster beinahe unsichtbar wird.

Optische Eigenschaften

Die projiziert-kapazitive Technologie (pcap touch) kann in vielen Ausgestaltungsformen zum Einsatz kommen. Dabei können gute optische Eigenschaften beispielsweise durch Index-Matched-ITO-Raster auf Glas oder PET erzielt werden. Die Lichtbrechung lässt sich aber auch reduzieren, indem man den Luftspalt zwischen Display und Touchscreen minimiert oder den Touchscreen optisch an das Display koppelt. Dies führt zu einem höheren Kontrast und einer verbesserten Lichtdurchlässigkeit vom Display an den Nutzer. Verdrahtete Sensoren bieten indes zwar eine gute Übertragung zwischen den einzelnen leitfähigen Elementen, aber die üblichen 10 µm-Drähte sind im Touchscreen-Sensor sichtbar. Auch bei einseitig bedruckten Modellen kann das Überbrückungsraster sichtbar sein und die Optik beeinträchtigen.

Anzahl an Berührungspunkten (Single-, Dual- und Multi-Touch)

Die projiziert-kapazitive Technologie (pcap touch) kann in ihren verschiedenen Ausgestaltungsformen einen, zwei oder mehrere Berührungspunkte unterstützen. Self-Capacitance-Lösungen beschränken sich auf Single- und Dual-Touch-Anwendungen. Dabei sind Gesten zwar möglich, mitunter jedoch mit Ghosting-Effekten verbunden. Mutual-Capacitance-Lösungen hingegen ermöglichen eine umfassende Multi-Touch-Interaktivität, da jeder Knoten bzw. Schnittpunkt einzeln adressierbar ist. Windows 7 Touch Logo erfordert mindestens Dual-Touch-Performance und unterstützt bis zu 100 simultane Berührungspunkte.

Geschwindigkeit

Nutzer werden immer anspruchsvoller und verlangen nach Systemen mit praktisch instantaner Reaktion. Die meisten von ihnen sind mit einer Reaktionsgeschwindigkeit von bis zu 20 Millisekunden (ms) oder weniger zufrieden, doch erfahrene Anwender erkennen teilweise Reaktionsverzögerungen ab 10 ms. Dabei ist es wichtig zu verstehen, dass sich die Verzögerung bei der Reaktion des Systems auf eine Berührung nicht nur auf die Reaktionszeit der Touchscreen-Elektronik beschränkt. Anwendungsentwickler müssen vielmehr auch Verzögerungen berücksichtigen, die durch Treiber, Betriebssysteme, Software-Rendering und Grafikkarten verursacht werden. Die Minimierung der Reaktionszeit ist auf jeder Hard- und Softwareebene ein wichtiger Faktor und wenn die Systemelektronik die für ein optimales Nutzererlebnis verfügbaren 20 ms komplett aufbraucht, kann sich die Gesamtreaktionszeit durchaus auf 30-40 ms erhöhen und so zu einem schlechten Nutzererlebnis führen. Die verfügbare Reaktionszeit wird oft als „Reaktionsbudget“ bezeichnet, und dieses Budget an kumulierten Zeitverzögerungen muss bei der Entwicklung von Hard- und Softwarekomponenten grundsätzlich eingehend berücksichtigt werden [siehe Abbildung 8].

Für die Berührungserkennung stehen verschiedene Methoden zur Verfügung, von denen einige mitunter kürzere Reaktionszeiten bieten als andere. Bei Self-Capacitance-Systemen mit Multi-Pad muss jedes Pad seriell adressiert werden. Daher eignen sich derartige Systeme nur für Anwendungen mit kleinem Display. Bei Self-Capacitance-Systemen mit Zeilen und Spalten werden zur Berührungserkennung alle Elektroden sequentiell gescannt. Bei einem System mit 40 Zeilen und 60 Spalten wären also 100 einzelne Scans erforderlich.

Bei Mutual-Capacitance-Systemen mit derselben Anzahl an Zeilen und Spalten, bei denen jeder Schnittpunkt einzeln adressierbar ist, wären sogar 2.400 einzelne Scans erforderlich. Diese als „X/Y“ bezeichnete Methode, bei der X für die Zeilen und Y für die Spalten steht, hätte erhebliche Auswirkungen auf die Reaktionszeit und würde das System unbenutzbar machen. Durch eine Verringerung der Messdurchläufe auf X*1 kann der Zeitaufwand drastisch reduziert werden, da bei einer solchen Lösung nur die vorhandenen Zeilen und zeitgleich die Spalten gemessen werden. Damit wären für ein System mit 40 Zeilen und 60 Spalten nur 40 Messdurchläufe erforderlich. Der Nachteil dieser Messzeitverringerung besteht in der potenziell niedrigeren Genauigkeit, weshalb hoch entwickelte Methoden und Algorithmen der Berührungserkennung erforderlich sind.

Illustration 8: PCAP – Speed

Widerstandsfähigkeit

Bei der projiziert-kapazitiven Technologie (pcap touch) wird ein Signal nach außen projiziert, wodurch ein elektrisches Feld entsteht, das von der Systemelektronik gemessen werden kann. Da bei dieser Technologie kein direkter Kontakt mit der aktiven Berührungsoberfläche erforderlich ist, wird der Berührungssensor oftmals mit einer Schutzlinse (in der Regel ein Glassubstrat) abgedeckt [siehe Abbildung 9]. Diese Schutzabdeckung kann abhängig von den Anforderungen der jeweiligen Anwendung aus normalem, vorgespanntem oder chemisch gehärtetem Glas bestehen. Diese sogenannte „Second-Surface-Technologie“ (bestehend aus einer Frontoberfläche, die Kratzern und Verschleiß ohne Beeinträchtigung der Touch-Performance standhält) sorgt dafür, dass Risse, Kratzer und sonstige Abnutzungserscheinungen am Display tiefer sein müssten als die gesamte Glasabdeckung, um die Elektroden zu erreichen und funktionale Schäden hervorzurufen.

Bei Self-Capacitance-Lösungen sind höhere Signalstärken möglich, sodass Signale Glasschichten mit einer Dicke von bis zu 20 mm durchqueren können, wobei dickere Glasabdeckungen die Leistung und Genauigkeit des Systems beeinträchtigen können. Für Mutual-Capacitance-Lösungen, bei denen die Signalstärke geringer ist, sind Glasabdeckungen mit einer Dicke von 0,7 bis 2,0 mm üblich.

Illustration 9: PCAP – Durability

Durchlässigkeit (Bildschirmhelligkeit)

Die Lichtdurchlässigkeit projiziert-kapazitiver Systeme (pcap touch) ist vom Aufbau des Sensors abhängig. Für Glas-auf-Glas-Lösungen sind Durchlässigkeitswerte von mehr als 90 % möglich. Werden PET-Schichten verwendet, kann sich die Lichtdurchlässigkeit auf 86-90 % verringern, wobei jedoch mit einigen hochmodernen Fertigungsprozessen PET-basierte Konstruktionen mit einer Lichtdurchlässigkeit von über 88 % hergestellt werden können.

Anti-Glare

Der Blendschutz ist ein wichtiger Faktor bei der Entwicklung von Berührungssensoren, da er eine optimale Bildschirmlesbarkeit unter Tageslichteinfluss ermöglicht. Lichtreflexionen auf dem Touchscreen können durch die Verwendung einer entspiegelnden Glasabdeckung stark reduziert werden. Die entspiegelnde Wirkung kann beispielsweise durch ein chemisches Ätzverfahren erzielt werden, das Oberflächenanomalien verursacht, die das Licht brechen und so zerstreuen, dass die Bildschirmanzeige trotz Lichteinfall erkennbar bleibt. Alternativ kann die Glasabdeckung des Sensors mit einem speziellen Überzug oder einer PET-Filmbeschichtung versehen werden. Beide Lösungen dienen dazu, das reflektierte Licht zu zerstreuen und auf diese Weise ein besseres Nutzererlebnis zu ermöglichen. Da eine zu starke Blendschutzbehandlung die Helligkeit des Bildschirms beeinträchtigen kann, ist es äußerst wichtig, für jede Anwendung genau die richtige Anti-Glare-Lösung auszuwählen.

Anti-Stiction

Anti-Stiction bzw. die Verringerung der Haftreibung, die bei der Bewegung von Fingern oder Gegenständen auf der Displayoberfläche entsteht, ermöglicht ein verbessertes Nutzererlebnis. Normales Glas sowie einige Beschichtungen können die Reibung beim Ziehen und Schieben sowie bei der Steuerung mit Gesten erhöhen. Eine Anti-Stiction-Oberfläche sorgt hingegen dafür, dass die Finger mühelos über die Bildschirmoberfläche gleiten, und ermöglichen eine natürliche und geschmeidige Gestensteuerung [siehe Abbildung 10].

Illustration 10: PCAP – Anti-Stiction

Skalierbarkeit

Bei projiziert-kapazitiven Systemen (pcap touch) ist es unvermeidbar, dass für größere Sensoren zusätzliche Zeilen und Spalten erforderlich sind, um die Berührungserkennung eins zu eins zu übernehmen. Da für jede Zeile und Spalte (Elektrode) ein eigener Zugang erforderlich ist, müssen Kabelabgänge und Elektronik für jede Sensorgröße neu entwickelt werden. Darüber hinaus ist bei glasbasierten Lösungen für die Erstellung eines neuen Rasters jeweils eine neue Maske erforderlich, um die einzigartigen ITO-Schichten zu erzeugen. Werden Leitungsdrähte verwendet, muss ein neues Programm entwickelt werden, um das neue Leitungsraster zu konstruieren. Auch bei PET-basierten Lösungen ist für die Vereinzelung des Sensors ein neues Programm erforderlich.

Bloße Hände, Latexhandschuhe und leitfähige Stifte

Das elektrische Feld projiziert-kapazitiver Systeme (pcap touch) reicht über die Glasabdeckung hinaus, um Berührungen mit bloßen oder behandschuhten Händen sowie mit leitfähigen Stiften zu erfassen. Self-Capacitance-Systeme können so ausgelegt werden, dass sie sowohl Berührungen mit bloßen Fingern als auch mit dicken Winterhandschuhen erkennen können, obwohl die Fähigkeit, beide Auslöser mit einer einzigen Konfiguration zu erkennen, die Genauigkeit einschränken kann. Mutual-Capacitance-Systeme können sowohl Berührungen mit bloßen Fingern, als auch mit dünnen Latex-Handschuhen aus medizinischen und lebensmittelverarbeitenden Bereichen erkennen, nicht aber mit dicken Winterhandschuhen (es sei denn, diese sind leitfähig). Leitfähige Stifte können so konstruiert werden, dass sie mit beiden Systemen funktionieren. In der Regel ist für Mutual-Capacitance-Systeme allerdings eine schmalere Stiftspitze ausreichend [siehe Abbildung 11].

Illustration 11: PCAP – Latexhandschuh

Sensorlinien und Berührungsauflösung

Bei projiziert-kapazitiven Systemen (pcap touch) wird die Anzahl der Schnittpunkte oder Knoten von der Anzahl der Sensor- und Fahrlinien bestimmt. Dabei stellt jeder Knoten einen Berührungspunkt dar. Außerdem ist die Systemelektronik durch Interpolation in der Lage, die Informationen vieler umgebender Elektroden für die exakte Ermittlung der Berührungspunkte zu verwenden. Bei Self-Capacitance-Systemen beschränken sich diese Informationen auf die Messwerte, die bei jedem Zeilen- und Spaltenscan ermittelt werden, weshalb der Elektronik bei derartigen Anwendungen weniger Daten zur Interpolation zur Verfügung stehen. Im Gegensatz dazu weisen Mutual-Capacitance-Systeme eine viel höhere Dichte an interpolierbaren Elektrodeninformationen auf und ermöglichen so eine äußerst präzise Berührungserkennung. So wäre die Berührungsdichte bei einem Mutual-Capacitance-System mit 40 Zeilen und 60 Spalten 24-mal so hoch wie bei einem entsprechenden Self-Capacitance-System.

Oberflächenverunreinigungen

Die projiziert-kapazitive Technologie (pcap touch) ist eine ideale Lösung für Touchscreen-Anwendungen, die öffentlich zugänglich sind oder unter extremen Umgebungsbedingungen zum Einsatz kommen, bei denen sich Staub und Schmutz auf der Touchscreen-Oberfläche oder in den Kanten der Einfassung ablagern können. Da projiziert-kapazitive Systeme von den meisten Oberflächenverunreinigungen nicht beeinträchtigt werden, eignen sie sich gegebenenfalls besser für Self-Service-Anwendungen als alternative Touch-Technologien, bei denen kritische Sensoren an den Rändern oder in den Ecken des Bildschirms angebracht sind.

Flache Frontoberfläche und industrietaugliches Design

Zu den einzigartigen Merkmalen projiziert-kapazitiver Systeme (pcap touch) zählt die Tatsache, dass sie in Geräte mit flacher Frontoberfläche (Flat Front Surface, FFS) integriert werden können. Da alle Raster- und Kabelanschlüsse durch eine Glasabdeckung geschützt sind, muss der Bildschirm nicht mit einer Einfassung versehen werden. Damit eignet sich diese Technologie für moderne industrietaugliche Anwendungen, die den Endnutzer sowohl auf ästhetischer als auch auf funktionaler Ebene ansprechen. Können bei Touchscreens mit Einfassungen Bedienelemente in den Randbereichen mitunter nicht mit dem Finger erreicht werden, sind bei PCT-Systemen mit durchgehend flacher Frontoberfläche selbst Schaltflächen in den äußersten Bildschirmecken kein Problem. Darüber hinaus wirkt ein aufgedruckter Rand unter der Glasabdeckung wie eine virtuelle Einfassung, die mit dem Firmenlogo oder -namen versehen werden kann [siehe Abbildung 12]. Außerdem sind FFS-Bildschirme weniger anfällig für Schmutzablagerungen und lassen sich leichter reinigen als herkömmliche Ausführungen.

Illustration 12: PCAP – Flat Front Surface oder virtuelle Einfassung

Illustration 13: PCAP – Flat Front Surface oder virtuelle Einfassung

Produktspezifikationen (typische Werte)

MerkmalMutual Capacitance Self Capacitance
Lichtdurchlässigkeit84% bis 90%
EingabemethodeFinger, dünne Handschuhe, leitfähige StifteFinger, dicke Handschuhe, leitfähige Stifte
Second SurfaceJa
DichtigkeitNEMA 4 / 12 und IP 65
Response Time6 ms10 ms
Berührungen20+1 (dual)
Genauigkeit> 99 %> 98,5 %

3M: Innovationen für die Zukunft der Multi-Touch-Technologie

Die projiziert-kapazitiven Systeme von 3M (3M PCT) sind speziell auf die Bedürfnisse großer Bildschirme ausgelegt. Immer fokussiert auf ganzheitliche Anwenderlösungen hat 3M seine jahrzehntelange Erfahrung in der Herstellung von Filmbeschichtungen mit seiner über 35-jährigen ausgewiesenen Expertise im Bereich kapazitive Elektronik vereint, um Multi-Touch PCT-Systeme und Display-Lösungen für Touchscreens mit 8,4 bis 32 Zoll Bildschirmdiagonale zu entwickeln.

Mit seinem speziellen Rolle-zu-Rolle-Strukturierungsverfahren für PET-Schichten ist 3M in der Lage, seinen Kunden ein hohes Maß an Designflexibilität zu bieten – ohne die hohen Kosten, die mit Glas-auf-Glas-Lösungen einhergehen. Darüber hinaus ist es mit diesem modernen Herstellungsverfahren möglich, durch Index-Matching der ITO-Schicht ein beinahe unsichtbares Raster zu erstellen, das kombiniert mit proprietären optisch klaren Klebstoff-Filmen die Helligkeit und Lichtdurchlässigkeit des Bildschirms erhöht.

Mit dieser folienbasierten Lösung kann 3M seine Kernkompetenzen im Bereich der Folientechnologien auch für Touchscreen-Anwendungen einsetzen, um auch in Zukunft innovative Beschichtungen für verbesserte optische Eigenschaften zu entwickeln und das Nutzererlebnis durch eine verbesserte Oberflächenbeschaffenheit zu optimieren. Darüber hinaus ist 3M in der Lage, die Funktionalität projiziert-kapazitiver Systeme durch Ergänzen oder Ersetzen einzelner Schichten zu erweitern. Beispielsweise durch Blickschutzfolien, die das seitliche Ablesen von Displays durch unerwünschte Zuschauer unterbinden, Anti-Reflexionsfolien, die LCD-Bildschirme vor einfallendem Sonnenlicht schützen, oder durch Sicherheitsfolien, die zum Schutz gegen Glasbruch beitragen.

Ergebnis der Expertise von 3M im Bereich der Elektronik ist der patentierte Multi-Touch-Controller „Multi-Touch Electronics PX400“, der speziell für größere Displays entwickelt wurde und nicht auf der für tragbare Geräte (3,5 bis 11,6 Zoll) üblichen Elektronik basiert. Dieser optimierte Controller ist eine skalierbare Komplettlösung für Multi-Touch-Systeme mit umfassendem Garantieschutz, die alle Vorteile der projiziert-kapazitiven Systeme von 3M in sich vereint.

Schließlich zeichnen sich die PCT-Systeme von 3M natürlich auch durch ihr spezielles Schutzglas aus. Damit sind hochmoderne industrietaugliche Konstruktionen ohne oberflächenmontierte Komponenten und Einfassungen aller Art möglich, die sich negativ auf die Gesamtästhetik auswirken und anfällig für Beschädigungen sowie Schmutzablagerungen sind. Nicht-aktive Glasabdeckungen ermöglichen es Produktentwicklern, das Touchscreen-Glas bis an den Rand des Displays auszudehnen und kapazitive oder sogar mechanische Schaltflächen in das Industriedesign zu integrieren.

Das Endergebnis ist das Multi-Touch-System 3M PCT, eine leistungsstarke und hochpräzise interaktive Lösung, die dazu beiträgt, die wachsenden Anforderungen moderner Benutzerschnittstellen zu erfüllen.

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2011 reproduziert. Alle Rechte vorbehalten.


 

Resistiv (4-, 5-, 7- and 8-Draht)

Sensormaterialien

Glas- oder Acrylsubstrat, Abstandshalterpunkte, Polyesterfolie(n)

Funktionsprinzip

  • Bei einer Berührung wird die flexible Deckschicht in Kontakt mit der unteren Glas schicht gedrückt.
  • An die Deckschicht und die untere Schicht wird nacheinander ein Spannungsgradient angelegt (X- und Y-Achse).
  • Der Controller berechnet die X- und Y-Position der Berührung anhand des an die eine Seite angelegten Spannungsgradienten und unter Verwendung der anderen Seite als Spannungssonde.

Illustration 1: Resistive Touch

Pro und Kontra

ProKontra
Am weitesten verbreitete Touch-TechnologiePET-Deckschicht ist extrem anfällig für Kratzer, Schnitte und Brandflecken durch Zigaretten
Kann mit bloßem Finger, behandschuhtem Finger oder Eingabestift aktiviert werdenPET-Schicht ist ein biegsames mechanisches Element mit leitfähiger Keramikeschichtung, die mit jeder Durchbiegung verschleißt
KostengünstigLichtdurchlässigkeit in der Regel 80 % bis 85 %
Auf zwei auflösbare Punkte beschränkt; drei oder mehr auflösbare Punkte erfordern einen resistiven Matrixsensor

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.


 

Surface Acoustic Wave (SAW) — Akustische Oberflächenwellen

Sensormaterialien

Glas, piezoelektrische Messwandler

Funktionsprinzip

  • Piezoelektrische Sender am Sensor erzeugen Schallwellen auf der Oberfläche des Glassubstrats an abwechselnden X-Achsen- und Y-Achsen-Strukturen.
  • Die Schallwellen werden durch eine Randrippenstruktur reflektiert, welche die Energie zu piezo-elektrischen Empfängern lenkt.
  • Eine Berührung der Oberfläche des Sensors bewirkt eine Dämpfung eines Teils der Welle entsprechend der Berührungsposition.
  • Die Berührungsposition basiert auf der Verzögerung des Sendeimpulses bis zur Mitte des Dämpfungsbereichs der Welle.

Illustration 1: Surface Acoustic Wave (SAW)

Pro und Kontra

ProKontra
Berührung mit bloßem Finger, manchen Handschuhen oder durch einen weichen, leitfähigen Eingabestift aktiviertBewegliche Flüssigkeiten oder feste Schmutzteilchen können falsche Berührungsmeldungen oder Bereiche ohne Berührungsfunktion verursachen, bis sie vollständig entfernt sind
Lichtdurchlässigkeit in der Regel 92 %Abdichtung gegen Schmutz und Wasser kann schwierig sein
Typischerweise breiter Rand
Auf einen auflösbaren Punkt beschränkt

Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.