Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas. Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
Bitte beachten Sie, dass Canvys kundenspezifische Lösungen anbietet. Wir sind ein OEM (Original Equipment Manufacturer) bzw. ein ODM (Original Design Manufacturer). Somit sind unsere hier vorgestellten Produkte sogenannte Plattformen, welche in erster Linie eine Grundlage für kundenspezifische Monitorlösungen bilden. Daher werden an dieser Stelle nur die technischen Basis-Spezifikationen der Produkte angegeben. Je nach Ihren Anforderungen und den benötigten Stückzahlen können wir weitere Anpassungen und Modifikationen anbieten.
Sprechen Sie mit uns. Wir beraten Sie gerne.
Verfügbare Bildschirmdiagonalen
Plattform-Spezifikationen
Auto Luminance System und Kalibrierungsmodus
DICOM® kompatibel
Glatte Glasoberfläche für einfache Reinigung und Desinfektion
LED-Backlight mit geringem Stromverbrauch
Langfristig lieferbar mit Kunststoffgehäuse
und Front: IP 65 / Gesamteinheit: IP X1
Bildschirmdiagonale | 21.5″ / 54.6 cm | 23.8″ / 60.5 cm |
---|---|---|
Seitenverhältnis | 16:9 | 16:9 |
Zu empfehlende Auflösung | 1920 (RGB) × 1080 (Full HD) | 1920 (RGB) × 1080 (Full HD) |
Displayfarben | 16.7M 6-bit + Hi-FRC 96% sRGB |
16.7M 8-bit 95% sRGB |
Panelhelligkeit | 250 cd/m² typ. | 250 cd/m² typ. |
Kontrastverhältnis | 1000:1 typ. | 3000:1 typ. |
Blickwinkel (H x V) | 178° / 178° typ. | 178° / 178° typ. |
Gehäuse | Kunststoff | Kunststoff |
Zertifizierungen und Normen | Sicherheit: cTUVus 60601-1 Edition 3.1, CB 60601-1 Edition 3.1
EMV: IEC/EN 60601-1-2 4th Edition, FCC Part 15 (Subpart B, Class B) REACH, RoHS, WEEE |
Übersicht der Schnittstellen
Detail-Infos zu den technischen Merkmalen
Projiziert Kapazitiver Touch (Projected Capacitive Touch)
Einleitung
Die projiziert-kapazitive Technologie (Projected Capacitive Technology, pcap touch) entwickelt sich rasend schnell zu einer der wichtigsten Touch-Technologien für immer mehr Anwendungen von Consumer-Geräten bis hin zu kommerziellen Applikationen für Retail und Gaming Signage. Da touchfähige mobile Geräte von immer mehr Nutzern verwendet werden, geben sich Verbraucher und Experten längst nicht mehr mit einfacher Single-Touch-Funktionalität zufrieden und erwarten statt dessen berührungsaktive Anwendungen mit Multi-Touch- und Multi-User-Fähigkeiten. Obwohl der Begriff „projiziert-kapazitive Technologie (pcap touch)“ relativ breit gefasst ist, sollen in diesem Dokument nur zwei der wichtigsten Methoden zur Berührungserkennung – Self Capacitance und Mutual Capacitance – untersucht und ihre unterschiedlichen Einsatzmöglichkeiten erörtert werden. Jede dieser Erkennungsmethoden ist für ganz bestimmte Anforderungen ausgelegt und die Kenntnis ihrer jeweiligen Stärken und Eignungen kann Hard- und Softwareentwicklern dabei helfen, für jede Anwendung genau die richtige Touch-Technologie auszuwählen.
Funktionsweise der projiziert-kapazitiven Technologie (PCAP Touch)
Die projiziert-kapazitive Technologie (PCAP) erkennt Berührungen, indem sie die elektrische Kapazität an jeder adressierbaren Elektrode misst. Wenn sich ein Finger oder leitfähiger Stift einer Elektrode nähert, wird ihr elektromagnetisches Feld gestört und ihre elektrische Kapazität verändert. Diese Veränderung kann von der Elektronik gemessen und in X,Y-Koordinaten umgewandelt werden, die dann vom System zur Berührungserkennung genutzt werden können. Bei den Methoden zur Berührungserkennung werden zwei Haupttypen unterschieden, die als Self Capacitance (Eigenkapazität) und Mutual Capacitance (Gegenkapazität) bezeichnet werden [siehe Abbildungen 1 und 2] und verschiedene Vor- und Nachteile besitzen.
Self-Capacitance
Die erste Erkennungsmethode beruht auf der Eigenkapazität. Dabei misst die Elektronik den an jeder Elektrode anliegenden Strom gegenüber dem Erdungsniveau. Für die Berührungserkennung gibt es zwei Möglichkeiten, wobei die Elektroden entweder als Multi-Pad oder in Zeilen und Spalten angeordnet sein können [siehe Abbildungen 3 und 4]. Bei der Multi-Pad-Konstruktion ist jede Elektrode bzw. jedes „Pad“ einzeln von der Elektronik adressierbar, weshalb eine individuelle Verbindung zwischen Elektrode und Controller erforderlich ist. Aus diesem Grund ist bei Self-Capacitance-Systemen mit Multi-Pad eine Multi-Touch-Steuerung zwar möglich, da aber jedes Pad einzeln adressiert werden muss, ist die Umsetzung für Displays mit mehr als 3,5 Zoll Bildschirmdiagonale sehr schwierig. Bei der Anordnung in Zeilen und Spalten stellt jede Zeile und jede Spalte eine Elektrode dar und wird einzeln vom Controller adressiert. Obwohl der Schnittpunkt einer Zeile und einer Spalte ein eindeutiges Koordinatenpaar darstellt, kann die Elektronik nur einzelne Elektroden, nicht aber jeden einzelnen Schnittpunkt erfassen. Daher sind diese Systeme auf Single- und Dual-Touch-Erkennung beschränkt, wobei sogenannte „Ghost Points“ problematisch sein können. Diese sind das Ergebnis imaginärer oder falscher Schnittpunkte an Stellen, die nicht dem Berührungspunkt entsprechen [siehe Abbildung 5].
Um in Self-Capacitance-Systemen Berührungen zu erfassen, scannt die Elektronik alle Elektroden und misst den an ihnen anliegenden Strom, um den Ruhestrom zu bestimmen. Wenn sich ein Finger oder leitfähiger Stift dem Bildschirm nähert, koppelt er sich an die Elektroden und erhöht die Stromaufnahme, während er einen Erdungspfad bildet. Der Controller ermittelt den Berührungspunkt, indem er feststellt, welche Zeile und Spalte der Berührungsstelle am nächsten ist. Die Genauigkeit des Verfahrens wird durch Interpolation erhöht.
Mutual Capacitance
Unter Mutual Capacitance (Gegenkapazität) versteht man die beabsichtigte oder unbeabsichtigte elektrische Kapazität zwischen zwei geladenen Gegenständen. Bei projiziert-kapazitiven Touchscreens (pcap touch) wird absichtlich eine Gegenkapazität zwischen den sich im Umfeld der einzelnen Schnittpunkte befindlichen Elementen von Zeilen und Spalten aufgebaut [siehe Abbildung 6]. Auf diese Weise kann die Systemelektronik jeden Knoten (Schnittpunkt) individuell messen und so mit einem einzigen Scandurchlauf mehrere Berührungen auf dem Bildschirm erfassen.
Berührt man den Bildschirm in der Nähe eines Schnittpunkts, wird ein Teil der Gegenkapazität zwischen Zeile und Spalte an den Finger gekoppelt und die von der Elektronik gemessene elektrische Kapazität des Schnittpunkts reduziert. Diese reduzierte elektrische Kapazität überschreitet die von der Elektronik festgelegte „Berührungsschwelle“ und signalisiert dem System, dass eine Berührung stattgefunden hat.
Aufbau kapazitiver Touchscreens
Für die Konstruktion kapazitiver Touchscreens stehen mehrere Techniken zur Verfügung, darunter die Konstruktion aus Leitungsdrähten oder das Auftragen transparenter leitfähiger Materialien wie Indiumzinnoxid (ITO) auf eine „Sandwich-Filmschicht“ aus Polyester (PET) oder ein Glassubstrat.
Konstruktion aus Leitungsdrähten
Die Konstruktion aus Leitungsdrähten bietet ein höheres Signal-Rausch-Verhältnis als die ITO-Konstruktion. Allerdings sind die Leitungsdrähte normalerweise mit bloßem Auge sichtbar. Sie können entweder rasterförmig angeordnet und durch eine dielektrische Schicht voneinander getrennt oder speziell als einzelne Schicht ausgelegt sein, wobei die Elektroden mit einer Schutzschicht aus Glas oder PET abgedeckt sind.
Indiumzinnoxid (ITO)
Durch das Auftragen von Indiumzinnoxid (ITO) auf eine Oberfläche aus Glas oder PET lassen sich in der Regel Flächenwiderstände im Bereich von 50-200 Ohm pro Flächenquadrat erreichen. Flächenwiderstand und Lichtdurchlässigkeit sind direkt proportional zueinander, d. h. je höher der Widerstand desto höher die Lichtdurchlässigkeit. Das ist darauf zurückzuführen, dass die ITO-Schicht typischerweise umso dünner ist, je höher die angestrebte Lichtdurchlässigkeit sein soll.
Die Sichtbarkeit von Rastern mit niedrigerem Widerstand kann unter anderem durch Index-Matching verringert werden. Das für die Matrix- oder Rautenanordnung kapazitiver Systeme erforderliche Raster kann mit Verfahren wie Laserätzen, Fotolithographie sowie zahlreichen proprietären Methoden erstellt werden. Bei Systemen mit ITO-Beschichtung müssen die leitfähigen Schichten gegeneinander isoliert werden.
Sensorkonstruktion
Für den Einsatz von Polyesterfilm (PET-Film) für projiziert-kapazitive Systeme gibt es drei Möglichkeiten: Dabei wird ein leitfähiges Raster entweder beidseitig auf eine einzige Platte oder einseitig auf zwei separate Platten aufgedruckt, die dann zu einer Schicht verpresst werden. Alternativ können zwei leitfähige Raster einseitig auf eine Platte aufgedruckt und durch eine dielektrische Schicht mit leitfähigen Brücken voneinander getrennt werden. Konstruktionen mit nur einer Schicht können die Displaydicke reduzieren, was vor allem für kompakte Mobiltelefondisplays von Bedeutung ist, erfordern aber zwei Arbeitsdurchgänge (Imaging) für ein und dieselbe Schicht. Konstruktionen mit zwei Schichten lassen sich in einem Arbeitsdurchgang erstellen, dafür müssen die beiden PET-Schichten jedoch zum Verpressen präzise in einer geraden Linie angeordnet werden [siehe Abbildung 7]. Bei einseitig in zwei Arbeitsdurchgängen bedruckten Platten weist das Überbrückungsraster mitunter optische Anomalien auf, die mit bloßem Auge sichtbar sind.
Systeme mit Glasplatten können eine ähnliche Konstruktion aufweisen wie Systeme mit PET-Schichten. Dabei hat Glas den Vorteil, dass es hinsichtlich Optik und Härte oftmals besser abschneidet als PET. Der Nachteil glasbeschichteter Sensorschichten besteht indes darin, dass für jede Sensorgröße oder -konstruktion eine eigene Bildmaske erforderlich ist. Dies kann insbesondere für niedrigere Produktionsmengen von Nachteil sein und bietet weniger Flexibilität bei der individuellen Anpassung und Konstruktion von Sensoren, da die Kosten für neue Masken zwischen $ 40.000 und $ 100.000 liegen können. Darüber hinaus können PET-Systeme in hochproduktiven Rolle-zu-Rolle-Verfahren gefertigt werden, das Kostensenkungen und Flexibilitätssteigerungen ermöglicht, während für glasbasierte Lösungen einzelne Glasplatten mit einer begrenzten Anzahl an Sensoren pro Platte erforderlich sind.
Strukturierung
Für die Herstellung projiziert-kapazitiver Sensoren werden hauptsächlich matrix- und rautenförmig angeordnete Raster verwendet. Rautenförmige ITO-Raster können einheitlicher gedruckt werden als Matrixraster. Auf diese Weise wird die Impedanz des gedruckten Rasters reduziert, was zu einer Verbesserung der optischen Eigenschaften beiträgt und die Systemleistung insgesamt optimiert.
Einige Touch-Technologien, darunter oberflächenkapazitive Touchscreens, haben eine uniforme, leitfähige Oberflächenbeschichtung, die eine einheitliche und weniger sichtbare Übertragungskonstante ermöglicht. Obwohl Indiumzinnoxid transparent und leitfähig ist, sind bei gerasterten ITO-Schichten Unterbrechungen im Raster erkennbar, die durch Änderungen der Lichtrefraktion hervorgerufen werden. Die Lichtbrechung kann jedoch durch raffinierte Index-Matching-Verfahren so stark eingeschränkt werden, dass das Raster beinahe unsichtbar wird.
Optische Eigenschaften
Die projiziert-kapazitive Technologie (pcap touch) kann in vielen Ausgestaltungsformen zum Einsatz kommen. Dabei können gute optische Eigenschaften beispielsweise durch Index-Matched-ITO-Raster auf Glas oder PET erzielt werden. Die Lichtbrechung lässt sich aber auch reduzieren, indem man den Luftspalt zwischen Display und Touchscreen minimiert oder den Touchscreen optisch an das Display koppelt. Dies führt zu einem höheren Kontrast und einer verbesserten Lichtdurchlässigkeit vom Display an den Nutzer. Verdrahtete Sensoren bieten indes zwar eine gute Übertragung zwischen den einzelnen leitfähigen Elementen, aber die üblichen 10 µm-Drähte sind im Touchscreen-Sensor sichtbar. Auch bei einseitig bedruckten Modellen kann das Überbrückungsraster sichtbar sein und die Optik beeinträchtigen.
Anzahl an Berührungspunkten (Single-, Dual- und Multi-Touch)
Die projiziert-kapazitive Technologie (pcap touch) kann in ihren verschiedenen Ausgestaltungsformen einen, zwei oder mehrere Berührungspunkte unterstützen. Self-Capacitance-Lösungen beschränken sich auf Single- und Dual-Touch-Anwendungen. Dabei sind Gesten zwar möglich, mitunter jedoch mit Ghosting-Effekten verbunden. Mutual-Capacitance-Lösungen hingegen ermöglichen eine umfassende Multi-Touch-Interaktivität, da jeder Knoten bzw. Schnittpunkt einzeln adressierbar ist. Windows 7 Touch Logo erfordert mindestens Dual-Touch-Performance und unterstützt bis zu 100 simultane Berührungspunkte.
Geschwindigkeit
Nutzer werden immer anspruchsvoller und verlangen nach Systemen mit praktisch instantaner Reaktion. Die meisten von ihnen sind mit einer Reaktionsgeschwindigkeit von bis zu 20 Millisekunden (ms) oder weniger zufrieden, doch erfahrene Anwender erkennen teilweise Reaktionsverzögerungen ab 10 ms. Dabei ist es wichtig zu verstehen, dass sich die Verzögerung bei der Reaktion des Systems auf eine Berührung nicht nur auf die Reaktionszeit der Touchscreen-Elektronik beschränkt. Anwendungsentwickler müssen vielmehr auch Verzögerungen berücksichtigen, die durch Treiber, Betriebssysteme, Software-Rendering und Grafikkarten verursacht werden. Die Minimierung der Reaktionszeit ist auf jeder Hard- und Softwareebene ein wichtiger Faktor und wenn die Systemelektronik die für ein optimales Nutzererlebnis verfügbaren 20 ms komplett aufbraucht, kann sich die Gesamtreaktionszeit durchaus auf 30-40 ms erhöhen und so zu einem schlechten Nutzererlebnis führen. Die verfügbare Reaktionszeit wird oft als „Reaktionsbudget“ bezeichnet, und dieses Budget an kumulierten Zeitverzögerungen muss bei der Entwicklung von Hard- und Softwarekomponenten grundsätzlich eingehend berücksichtigt werden [siehe Abbildung 8].
Für die Berührungserkennung stehen verschiedene Methoden zur Verfügung, von denen einige mitunter kürzere Reaktionszeiten bieten als andere. Bei Self-Capacitance-Systemen mit Multi-Pad muss jedes Pad seriell adressiert werden. Daher eignen sich derartige Systeme nur für Anwendungen mit kleinem Display. Bei Self-Capacitance-Systemen mit Zeilen und Spalten werden zur Berührungserkennung alle Elektroden sequentiell gescannt. Bei einem System mit 40 Zeilen und 60 Spalten wären also 100 einzelne Scans erforderlich.
Bei Mutual-Capacitance-Systemen mit derselben Anzahl an Zeilen und Spalten, bei denen jeder Schnittpunkt einzeln adressierbar ist, wären sogar 2.400 einzelne Scans erforderlich. Diese als „X/Y“ bezeichnete Methode, bei der X für die Zeilen und Y für die Spalten steht, hätte erhebliche Auswirkungen auf die Reaktionszeit und würde das System unbenutzbar machen. Durch eine Verringerung der Messdurchläufe auf X*1 kann der Zeitaufwand drastisch reduziert werden, da bei einer solchen Lösung nur die vorhandenen Zeilen und zeitgleich die Spalten gemessen werden. Damit wären für ein System mit 40 Zeilen und 60 Spalten nur 40 Messdurchläufe erforderlich. Der Nachteil dieser Messzeitverringerung besteht in der potenziell niedrigeren Genauigkeit, weshalb hoch entwickelte Methoden und Algorithmen der Berührungserkennung erforderlich sind.
Widerstandsfähigkeit
Bei der projiziert-kapazitiven Technologie (pcap touch) wird ein Signal nach außen projiziert, wodurch ein elektrisches Feld entsteht, das von der Systemelektronik gemessen werden kann. Da bei dieser Technologie kein direkter Kontakt mit der aktiven Berührungsoberfläche erforderlich ist, wird der Berührungssensor oftmals mit einer Schutzlinse (in der Regel ein Glassubstrat) abgedeckt [siehe Abbildung 9]. Diese Schutzabdeckung kann abhängig von den Anforderungen der jeweiligen Anwendung aus normalem, vorgespanntem oder chemisch gehärtetem Glas bestehen. Diese sogenannte „Second-Surface-Technologie“ (bestehend aus einer Frontoberfläche, die Kratzern und Verschleiß ohne Beeinträchtigung der Touch-Performance standhält) sorgt dafür, dass Risse, Kratzer und sonstige Abnutzungserscheinungen am Display tiefer sein müssten als die gesamte Glasabdeckung, um die Elektroden zu erreichen und funktionale Schäden hervorzurufen.
Bei Self-Capacitance-Lösungen sind höhere Signalstärken möglich, sodass Signale Glasschichten mit einer Dicke von bis zu 20 mm durchqueren können, wobei dickere Glasabdeckungen die Leistung und Genauigkeit des Systems beeinträchtigen können. Für Mutual-Capacitance-Lösungen, bei denen die Signalstärke geringer ist, sind Glasabdeckungen mit einer Dicke von 0,7 bis 2,0 mm üblich.
Durchlässigkeit (Bildschirmhelligkeit)
Die Lichtdurchlässigkeit projiziert-kapazitiver Systeme (pcap touch) ist vom Aufbau des Sensors abhängig. Für Glas-auf-Glas-Lösungen sind Durchlässigkeitswerte von mehr als 90 % möglich. Werden PET-Schichten verwendet, kann sich die Lichtdurchlässigkeit auf 86-90 % verringern, wobei jedoch mit einigen hochmodernen Fertigungsprozessen PET-basierte Konstruktionen mit einer Lichtdurchlässigkeit von über 88 % hergestellt werden können.
Anti-Glare
Der Blendschutz ist ein wichtiger Faktor bei der Entwicklung von Berührungssensoren, da er eine optimale Bildschirmlesbarkeit unter Tageslichteinfluss ermöglicht. Lichtreflexionen auf dem Touchscreen können durch die Verwendung einer entspiegelnden Glasabdeckung stark reduziert werden. Die entspiegelnde Wirkung kann beispielsweise durch ein chemisches Ätzverfahren erzielt werden, das Oberflächenanomalien verursacht, die das Licht brechen und so zerstreuen, dass die Bildschirmanzeige trotz Lichteinfall erkennbar bleibt. Alternativ kann die Glasabdeckung des Sensors mit einem speziellen Überzug oder einer PET-Filmbeschichtung versehen werden. Beide Lösungen dienen dazu, das reflektierte Licht zu zerstreuen und auf diese Weise ein besseres Nutzererlebnis zu ermöglichen. Da eine zu starke Blendschutzbehandlung die Helligkeit des Bildschirms beeinträchtigen kann, ist es äußerst wichtig, für jede Anwendung genau die richtige Anti-Glare-Lösung auszuwählen.
Anti-Stiction
Anti-Stiction bzw. die Verringerung der Haftreibung, die bei der Bewegung von Fingern oder Gegenständen auf der Displayoberfläche entsteht, ermöglicht ein verbessertes Nutzererlebnis. Normales Glas sowie einige Beschichtungen können die Reibung beim Ziehen und Schieben sowie bei der Steuerung mit Gesten erhöhen. Eine Anti-Stiction-Oberfläche sorgt hingegen dafür, dass die Finger mühelos über die Bildschirmoberfläche gleiten, und ermöglichen eine natürliche und geschmeidige Gestensteuerung [siehe Abbildung 10].
Skalierbarkeit
Bei projiziert-kapazitiven Systemen (pcap touch) ist es unvermeidbar, dass für größere Sensoren zusätzliche Zeilen und Spalten erforderlich sind, um die Berührungserkennung eins zu eins zu übernehmen. Da für jede Zeile und Spalte (Elektrode) ein eigener Zugang erforderlich ist, müssen Kabelabgänge und Elektronik für jede Sensorgröße neu entwickelt werden. Darüber hinaus ist bei glasbasierten Lösungen für die Erstellung eines neuen Rasters jeweils eine neue Maske erforderlich, um die einzigartigen ITO-Schichten zu erzeugen. Werden Leitungsdrähte verwendet, muss ein neues Programm entwickelt werden, um das neue Leitungsraster zu konstruieren. Auch bei PET-basierten Lösungen ist für die Vereinzelung des Sensors ein neues Programm erforderlich.
Bloße Hände, Latexhandschuhe und leitfähige Stifte
Das elektrische Feld projiziert-kapazitiver Systeme (pcap touch) reicht über die Glasabdeckung hinaus, um Berührungen mit bloßen oder behandschuhten Händen sowie mit leitfähigen Stiften zu erfassen. Self-Capacitance-Systeme können so ausgelegt werden, dass sie sowohl Berührungen mit bloßen Fingern als auch mit dicken Winterhandschuhen erkennen können, obwohl die Fähigkeit, beide Auslöser mit einer einzigen Konfiguration zu erkennen, die Genauigkeit einschränken kann. Mutual-Capacitance-Systeme können sowohl Berührungen mit bloßen Fingern, als auch mit dünnen Latex-Handschuhen aus medizinischen und lebensmittelverarbeitenden Bereichen erkennen, nicht aber mit dicken Winterhandschuhen (es sei denn, diese sind leitfähig). Leitfähige Stifte können so konstruiert werden, dass sie mit beiden Systemen funktionieren. In der Regel ist für Mutual-Capacitance-Systeme allerdings eine schmalere Stiftspitze ausreichend [siehe Abbildung 11].
Sensorlinien und Berührungsauflösung
Bei projiziert-kapazitiven Systemen (pcap touch) wird die Anzahl der Schnittpunkte oder Knoten von der Anzahl der Sensor- und Fahrlinien bestimmt. Dabei stellt jeder Knoten einen Berührungspunkt dar. Außerdem ist die Systemelektronik durch Interpolation in der Lage, die Informationen vieler umgebender Elektroden für die exakte Ermittlung der Berührungspunkte zu verwenden. Bei Self-Capacitance-Systemen beschränken sich diese Informationen auf die Messwerte, die bei jedem Zeilen- und Spaltenscan ermittelt werden, weshalb der Elektronik bei derartigen Anwendungen weniger Daten zur Interpolation zur Verfügung stehen. Im Gegensatz dazu weisen Mutual-Capacitance-Systeme eine viel höhere Dichte an interpolierbaren Elektrodeninformationen auf und ermöglichen so eine äußerst präzise Berührungserkennung. So wäre die Berührungsdichte bei einem Mutual-Capacitance-System mit 40 Zeilen und 60 Spalten 24-mal so hoch wie bei einem entsprechenden Self-Capacitance-System.
Oberflächenverunreinigungen
Die projiziert-kapazitive Technologie (pcap touch) ist eine ideale Lösung für Touchscreen-Anwendungen, die öffentlich zugänglich sind oder unter extremen Umgebungsbedingungen zum Einsatz kommen, bei denen sich Staub und Schmutz auf der Touchscreen-Oberfläche oder in den Kanten der Einfassung ablagern können. Da projiziert-kapazitive Systeme von den meisten Oberflächenverunreinigungen nicht beeinträchtigt werden, eignen sie sich gegebenenfalls besser für Self-Service-Anwendungen als alternative Touch-Technologien, bei denen kritische Sensoren an den Rändern oder in den Ecken des Bildschirms angebracht sind.
Flache Frontoberfläche und industrietaugliches Design
Zu den einzigartigen Merkmalen projiziert-kapazitiver Systeme (pcap touch) zählt die Tatsache, dass sie in Geräte mit flacher Frontoberfläche (Flat Front Surface, FFS) integriert werden können. Da alle Raster- und Kabelanschlüsse durch eine Glasabdeckung geschützt sind, muss der Bildschirm nicht mit einer Einfassung versehen werden. Damit eignet sich diese Technologie für moderne industrietaugliche Anwendungen, die den Endnutzer sowohl auf ästhetischer als auch auf funktionaler Ebene ansprechen. Können bei Touchscreens mit Einfassungen Bedienelemente in den Randbereichen mitunter nicht mit dem Finger erreicht werden, sind bei PCT-Systemen mit durchgehend flacher Frontoberfläche selbst Schaltflächen in den äußersten Bildschirmecken kein Problem. Darüber hinaus wirkt ein aufgedruckter Rand unter der Glasabdeckung wie eine virtuelle Einfassung, die mit dem Firmenlogo oder -namen versehen werden kann [siehe Abbildung 12]. Außerdem sind FFS-Bildschirme weniger anfällig für Schmutzablagerungen und lassen sich leichter reinigen als herkömmliche Ausführungen.
Produktspezifikationen (typische Werte)
Merkmal | Mutual Capacitance | Self Capacitance |
Lichtdurchlässigkeit | 84% bis 90% | |
Eingabemethode | Finger, dünne Handschuhe, leitfähige Stifte | Finger, dicke Handschuhe, leitfähige Stifte |
Second Surface | Ja | |
Dichtigkeit | NEMA 4 / 12 und IP 65 | |
Response Time | 6 ms | 10 ms |
Berührungen | 20+ | 1 (dual) |
Genauigkeit | > 99 % | > 98,5 % |
3M: Innovationen für die Zukunft der Multi-Touch-Technologie
Die projiziert-kapazitiven Systeme von 3M (3M PCT) sind speziell auf die Bedürfnisse großer Bildschirme ausgelegt. Immer fokussiert auf ganzheitliche Anwenderlösungen hat 3M seine jahrzehntelange Erfahrung in der Herstellung von Filmbeschichtungen mit seiner über 35-jährigen ausgewiesenen Expertise im Bereich kapazitive Elektronik vereint, um Multi-Touch PCT-Systeme und Display-Lösungen für Touchscreens mit 8,4 bis 32 Zoll Bildschirmdiagonale zu entwickeln.
Mit seinem speziellen Rolle-zu-Rolle-Strukturierungsverfahren für PET-Schichten ist 3M in der Lage, seinen Kunden ein hohes Maß an Designflexibilität zu bieten – ohne die hohen Kosten, die mit Glas-auf-Glas-Lösungen einhergehen. Darüber hinaus ist es mit diesem modernen Herstellungsverfahren möglich, durch Index-Matching der ITO-Schicht ein beinahe unsichtbares Raster zu erstellen, das kombiniert mit proprietären optisch klaren Klebstoff-Filmen die Helligkeit und Lichtdurchlässigkeit des Bildschirms erhöht.
Mit dieser folienbasierten Lösung kann 3M seine Kernkompetenzen im Bereich der Folientechnologien auch für Touchscreen-Anwendungen einsetzen, um auch in Zukunft innovative Beschichtungen für verbesserte optische Eigenschaften zu entwickeln und das Nutzererlebnis durch eine verbesserte Oberflächenbeschaffenheit zu optimieren. Darüber hinaus ist 3M in der Lage, die Funktionalität projiziert-kapazitiver Systeme durch Ergänzen oder Ersetzen einzelner Schichten zu erweitern. Beispielsweise durch Blickschutzfolien, die das seitliche Ablesen von Displays durch unerwünschte Zuschauer unterbinden, Anti-Reflexionsfolien, die LCD-Bildschirme vor einfallendem Sonnenlicht schützen, oder durch Sicherheitsfolien, die zum Schutz gegen Glasbruch beitragen.
Ergebnis der Expertise von 3M im Bereich der Elektronik ist der patentierte Multi-Touch-Controller „Multi-Touch Electronics PX400“, der speziell für größere Displays entwickelt wurde und nicht auf der für tragbare Geräte (3,5 bis 11,6 Zoll) üblichen Elektronik basiert. Dieser optimierte Controller ist eine skalierbare Komplettlösung für Multi-Touch-Systeme mit umfassendem Garantieschutz, die alle Vorteile der projiziert-kapazitiven Systeme von 3M in sich vereint.
Schließlich zeichnen sich die PCT-Systeme von 3M natürlich auch durch ihr spezielles Schutzglas aus. Damit sind hochmoderne industrietaugliche Konstruktionen ohne oberflächenmontierte Komponenten und Einfassungen aller Art möglich, die sich negativ auf die Gesamtästhetik auswirken und anfällig für Beschädigungen sowie Schmutzablagerungen sind. Nicht-aktive Glasabdeckungen ermöglichen es Produktentwicklern, das Touchscreen-Glas bis an den Rand des Displays auszudehnen und kapazitive oder sogar mechanische Schaltflächen in das Industriedesign zu integrieren.
Das Endergebnis ist das Multi-Touch-System 3M PCT, eine leistungsstarke und hochpräzise interaktive Lösung, die dazu beiträgt, die wachsenden Anforderungen moderner Benutzerschnittstellen zu erfüllen.
Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2011 reproduziert. Alle Rechte vorbehalten.
White Paper laden
White Paper: Canvys Touch Technology Selection Guide (2021 - englische Version)
7.31 MBDownload
Multi-Touch
Was ist Multi-Touch?
Obwohl die berührungsempfindliche Bedienoberfläche ("Touchscreen") dank einer wachsenden Zahl Touchscreen-fähiger Konsumprodukte zunehmend ins Bewusstsein der Verbraucher rückt, sind die Besonderheiten und die Vielfalt der Touch-Technologien ein Thema, das von den Nutzern der Gestensteuerung noch nicht vollständig verstanden wird. Aufgrund der Produktpositionierung dutzender Touch-Technologie-Hersteller, der Filterung von Bloggern und der Antworten, die durch die breite Touch-Gemeinde im Internet gepostet werden, existieren widersprüchliche Aussagen darüber, wie bestimmte Technologien funktionieren und welche Touch-Fähigkeiten jede Technologie wirklich besitzt. Um eine Grundlage für einen Vergleich der Technologien zu schaffen, werden hier die verschiedenen Eingabemöglichkeiten und die Touch-Technologien für diese Eingabeformen vorgestellt.
Image showing Multi Touch Application
Einmalige Berührung (Single Touch)
Von einem "Single Touch" spricht man, wenn ein Finger oder Eingabestift ein Berührungsereignis auf der Oberfläche eines berührungsempfindlichen Sensors oder innerhalb eines berührungsempfindlichen Feldes erzeugt, das durch den Touch-Controller erkannt wird. Die Software kann dann die X,Y-Koordinaten der Berührung berechnen. Diese Technologien wurden bereits in Millionen von Geräten integriert und sind normalerweise nicht in der Lage, im Rahmen ihrer Standardkonfiguration mehrere Berührungspunkte gleichzeitig zu erkennen und aufzulösen.
Einmalige Berührung mit Stifteingabe (Single Touch with Pen Input)
Die Kategorie des "Single Touch with Pen Input" kann von einem einfachen, inaktiven Zeiger oder Eingabestift bis zu komplexen, aktiven kabelgebundenen Stiften reichen. Inaktive Stifte ermöglichen die gleichen Eingabeeigenschaften wie ein Finger, nur mit größerer Zeigegenauigkeit, während kompliziertere aktive Stifte mehr Steuerungsfunktionen und Nutzungsmöglichkeiten für das Touchsystem erlauben, wie zum Beispiel die Möglichkeit zum Zeichnen und zur Handflächenzurückweisung oder zum Erkennen von Mausereignissen.
Einmalige Berührung mit Geste (Single Touch with Gesture)
Aufgrund von Verbesserungen, die viele Single-Touch-Technologien an Firmware, Software und Hardware hervorgebracht haben, sind deren Berührungsfunktionen erweitert worden. Einige Touch-Technologien nutzen höherentwickelte Verarbeitungsfähigkeiten, um zu "detektieren" oder zu erkennen, dass ein zweites Berührungsereignis stattfindet, was als ein "Gestenereignis" bezeichnet wird. Da Single-Touch-Systeme nicht in der Lage sind, die genaue Position des zweiten Berührungsereignisses aufzulösen, stützen sie sich auf Algorithmen zum Interpretieren oder Vorwegnehmen der beabsichtigten Gestenereignis-Eingabe. Gängige Branchenbegriffe für diese Funktion sind Zweifinger-Gesten, Dual Touch, Dualsteuerung und Gesten-Touch.
Doppelberührung (Two Touch)
"Two Touch" bezeichnet ein berührungsempfindliches System, das zwei räumlich voneinander getrennte, aber zeitgleiche Berührungsereignisse detektieren und auflösen kann. Das einfachste Beispiel für eine Two-Touch-Fähigkeit ist das gleichzeitige Ziehen zweier paralleler Linien auf dem Bildschirm. Two-Touch-Systeme können auch Gesten unterstützen.
Mehrfachberührung (Multi-Touch)
Multi-Touch bezeichnet die Fähigkeit eines berührungsempfindlichen Systems, gleichzeitig mindestens drei Berührungspunkte zu erkennen und aufzulösen. Alle drei oder mehr Berührungen werden erkannt und vollständig aufgelöst, was zu einem extrem verbesserten Nutzungserlebnis führt. Vor allem wegen der Geschwindigkeit, der Effizienz und der intuitiven Bedienbarkeit dieser Technologie sehen viele in Multi-Touch eine in Zukunft weit verbreitete Standardschnittstelle.
Vergleich der Berührungsfähigkeiten
Touch-Technologie | Single Touch | Single Touch/Pen | Single Touch/Gesture | Two Touch | Multi Touch |
Biegewelle (DST) | ja | jeder Eingabestift | Gesten-Upgrade | nein | nein |
Infrarot (IR) | ja | spezieller Eingabestift | Gesten-Upgrade | ja | ja |
Optisch | ja | spezieller Eingabestift | Gesten-Upgrade | ja | ja* |
Projiziert Kapazitiv | ja | spezieller Eingabestift | Standard | ja | ja |
Resistiv | ja | jeder Eingabestift | Gesten-Upgrade | nein** | nein |
Surface Acoustic Wave (SAW) | ja | spezieller Eingabestift | Gesten-Upgrade | nein | nein |
Oberflächen Kapazitiv | ja | jeder Eingabestift | Gesten-Upgrade | nein | nein |
* Optische Technologie mit mindestens 2 Kameras. Kann für Two-Touch und Multi-Touch mit Gesten-Upgrades geeignet sein.
** Widerstandsmatrix-Technologie. Kann für Two-Touch und Multi-Touch geeignet sein, ist aber nicht weit verbreitet.
Inhalt und Bilder von 3M wurden mit Genehmigung von © 3M 2010 reproduziert. Alle Rechte vorbehalten.
White Paper laden
White Paper: Canvys Touch Technology Selection Guide (2021 - englische Version)
7.31 MBDownload
Als OEM/ODM entwickeln wir Ihre höchst individuelle Monitorlösung, angefangen beim kleinsten Baustein bis hin zum komplexen Anzeigesystem
Mit hoher Wahrscheinlichkeit ist es möglich, die hier vorgestellte Monitor-Plattform feiner an Ihre individuellen Bedürfnisse bzw. an die jeweilige Anwendungsumgebung anzupassen. Doch es gibt vielfältige Möglichkeiten der Display-Individualisierung (Customizing), die von einer Reihe von Faktoren abhängen. Wir können an dieser Stelle nicht alles Machbare listen.
Deshalb bitten wir Sie, Kontakt mit uns aufzunehmen. Unsere Vertriebsingenieure können Ihnen in einem unverbindlichen Beratungsgespräch aufzeigen, welche Plattform-Modifikationen in Abhängigkeit von Ihren exakten Anforderungen realisierbar sind.
Hier nun auszugsweise ein Überblick über unsere Leistungen bzw. Kompetenzen hinsichtlich Customizing.
Auszug aus unseren Leistungen hinsichtlich weiterer Customizing-Möglichkeiten
Touchscreen-Integration
Canvys Spezialist für die Integration und Anpassung von Touchtechnologien
Folgende Lösungen sind möglich:
Sie suchen nach Ersatz für 3M Touchscreens?
Kundenspezifische Gehäuse-Entwicklung
Canvys bietet eine Vielzahl von maßgeschneiderten Gehäusen für industrielle und medizinische Anwendungen.
- Wir verwenden nur die hochwertigsten Materialien
- Wir verwenden Spritzguss, Tiefdruck, SLA-Prototyping, Strangguss und Druckguss
- Wir bieten verschiedene Gehäusedesigns an: Open Frame, Panel-/Chassis-/Rack-Montage, kundenspezifische Blende, Back-Cover, Kabelmanagement, robuste Gehäuse, schlanke und leichte Designs
- kundenspezifische Anforderungen wie z.B. ein Bootlogo, ein hinterdrucktes Kundenlogo auf dem Schutzglas oder Touchscreen oder spezifische Anforderungen an das jeweilige Gehäusematerial können ebenfalls umgesetzt werden
- Wir sorgen für eine dauerhafte und langfristige Verfügbarkeit der Displays
Canvys realisiert stückzahlenabhängig Gehäuse nach Wunsch: Open Frame, Panel, Chassis, Rack, kundenspezifisches Bezel, Rückcover, Kabelmanagement, Industrietauglichkeit, schlanke / leichte Bauweise, ...
Kundenspezifische Anforderungen wie z.B. ein Bootlogo, hinterdrucktes Kundenlogo auf dem Schutzglas bzw. Touchscreen oder spezifische Anforderungen an das jeweilige Gehäusematerial können ebenfalls umgesetzt werden.
Durch die Verwendung von langfristig verfügbaren Industriekomponenten garantiert Canvys eine langfristige Verfügbarkeit in gleichbleibender Form, Fit und Funktion.
Kontaktieren Sie uns, wir beraten Sie gerne hinsichtlich der Wahl des richtigen Gehäusekonzepts...
Kundenspezifische Gehäuseoptionen (Auszug)
Material | Prozess / Technologie | Gehäusedesign | Gehäusefarbe | Markenbildung | Schutzklasse |
Metall | Spritzguss | Open Frame kundenspezifisch | acerwhite | Kundenfarbe | IP-Schutz bis zu IP69K |
Aluminium | Deep Drawing | Panel / Chassis / Rack Mount kundenspezifisch | schwarz | Kundenlogo | |
Edelstahl | SLA** Prototyping | Bezel kundenspezifisch | grau | ||
Plastik, UV resistentes Material wie ASA*, Starex | Stranggus | True Flat Desktop kundenspezifisch | kundenspezifisch | ||
Druckguss | Design der Rückteilabdeckung, Kabelmanagement, robustes Industriegehäuse, Schlank- und Leichtbauweise |
* Acrylonitrile Styrene Acrylate
** Stereolithography
Weitere Integrationsleistungen
Canvys ist Experte für Befestigungslösungen
- Verschiedene Designs, Materialien, Farben möglich
- Ausstattung mit Wunschlogo des Kunden
- Kabelmanagement
- Höhenverstellbare Lösungen
- Dreh- und Neigungsfunktion
- VESA-konforme Befestigungsmöglichkeiten
- Viele weitere Befestigungs- und Tragarmlösungen
Ein Produkt wird erst dann ein "Gutes Produkt", wenn es auch in der angedachten Anwendungsumgebung mit Erfolg eingesetzt wird.
Wenn ein komplexes Kunden-Projekt von Anfang bis Ende alle Phasen durchlaufen hat und die kundenspezifische Monitorlösung hergestellt ist, kommt dessen wahre Bestimmung: Die Anwendung!
Erst hier im wirklichen Einsatz unter realen Umgebungsbedingungen müssen sich Design, Konzeption, Komponenten und somit das Gesamtsystem bewähren. Nur wenn das gelingt, spricht unser Kunde letztendlich von Erfolg!
Unsere kundenspezifischen Displaylösungen sind schon seit Jahrzehnten erfolgreich in den unterschiedlichsten Anwendungen und Märkten.
Diese Canvys-Plattform begründet beispielsweise die Basis für folgende Anwendungslösungen
Roboter-Assistierte Medizinische Systeme
Roboter-Assistierte Medizinische Systeme
Die roboter-assistierte Chirurgie hat sich bei verschiedenen chirurgischen Eingriffen an Herz, Brustkorb, Magen-Darm-Trakt, Orthopädie, Gynäkologie, Transplantation, Wirbelsäule und Urologie weit verbreitet. Entwickelt und gebaut für die Krankenhäuser von heute, um die Patientenversorgung der Zukunft zu gewährleisten.
Ein Vorteil des Einsatzes der computergestützten Methode besteht darin, dass der Chirurg nicht anwesend sein muss, was die Möglichkeit einer Fernoperation eröffnet.
Bei roboterunterstützten Operationen werden die Instrumente nicht direkt bewegt, sondern der Chirurg verwendet u.a. Touch-Display-Lösungen zur Überwachung der Instrumente.
Von der Roboterchirurgie spricht man bei operativen Eingriffen, die mit Hilfe von Robotersystemen durchgeführt werden. Sie wurde entwickelt, um die Grenzen bereits vorhandener minimal-invasiver chirurgischer Verfahren überwinden zu können und die Fähigkeiten der Chirurgen bei offenen Operationen zu verbessern.
Als ein nach ISO13485-zugelassener Hersteller medizinischer Geräte ist Canvys vollständig zertifiziert, Anzeigeeinheiten nach diesen hohen Standards zu liefern.
Canvys integriert langzeitverfügbare Komponenten, um die Verfügbarkeit über einen langen Lebenszyklus des Produkts aufrechtzuerhalten und die Notwendigkeit zeitintensiver Neukonstruktionen und teurer Rezertifizierungen zu vermeiden.
Zum Bedienen aller integrierten Medizingeräte werden selbstverständlich reine Monitore oder Displays mit integriertem Rechner (All-In-One/Panel-PCs) eingesetzt. Canvys bietet für diesen Bereich maßgeschneiderte Monitorlösungen inkl. entsprechenden Zertifizierungen mit Auflösungen von Full-HD bis 4k2k und hervorragenden Bildqualität in Bezug auf Helligkeit, Kontrast und Farbtreue. Unterschiedlich konfigurierbare Panel-PCs ermöglichen es, dem Performancebedarf jeder Applikation gerecht zu werden.
Integrierte Schutzgläser mit unterschiedlichen Entspiegelungsmöglichkeiten zur Reduzierung von Reflexionen an der Glasoberfläche ermöglichen ein einwandfreies Reinigen des Displays mit Desinfektionsmitteln. Alternativ ermöglicht die anwenderfreundliche Benutzeroberfläche über Touchscreens effiziente Arbeitsabläufe.
Das ergonomische Design der Displays mit integrierter Kabelabdeckung lässt sich problemlos über die VESA Schnittstelle an bestehende Robotic-Systeme integrieren.
Kundenspezifische Anforderungen wie z.B. ein Bootlogo, hinterdrucktes Kundenlogo auf dem Schutzglas bzw. Touchscreen oder spezifische Anforderungen an das Material des Kunststoffgehäuses können ebenfalls umgesetzt werden.
Hinweis: Alle Anwendungsberichte sind Beispiele dafür, wie Kunden unsere Produkte als Komponenten in ihren Systemen einsetzen. Die Einhaltung gesetzlicher Vorschriften liegt im Ermessen des jeweiligen Kunden, der die volle Verantwortung übernimmt. Aufgrund weltweit unterschiedlicher regulatorischer Richtlinien kann die Klassifizierung von Land zu Land unterschiedlich sein. Canvys ist in der Lage, Ihnen eine auf Ihre individuellen Bedürfnisse zugeschnittene Lösung zu liefern, auch für höher klassifizierte Geräte.
Empfohlene Produkte/Plattformen für diese Anwendung
G SERIES MEDICAL MONITORS
21.5" / 23.8"
Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas.
Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
G SERIES MEDICAL ALL-IN-ONE
21.5" / 23.8"
Medizinische All-In-One (Panel PC) basierend auf einem Intel®-Core-Prozessor der 6. Generation mit Speicher- und SSD-Erweiterungsoption.
Verfügbar im 16:9 Format.
- Full HD-Panel mit hohem Kontrastverhältnis
- Intel® Core i5-6300U, 2-Kern-Prozessor der 6. Generation, 2,4 GHz
- 8 GB DDR4 2133 SDRAM (bis zu 16 GB verfügbar)
- Modulare Erweiterung von Schnittstellen wie Bluetooth, WLAN, RFID oder zusätzliche Optionen wie Webcam und Leseleuchten
- USB-Schnittstelle unterstützt ISO 14443-A
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
FULL-CUSTOMIZED-LÖSUNGEN
Canvys ist ein OEM/ODM-Hersteller. Um Ihnen kundenspezifische Display-Lösungen zu einem wettbewerbsfähigen Preis anbieten zu können, haben wir verschiedenen Plattformen entwickelt.
Diese dienen als Basis für vielfältige individuelle Lösungen, welche wir für Sie realisieren können.
Doch für gewisse Kunden/Anwendungsszenarien kommen diese Plattformen nicht in Frage. Sie benötigen einzigartige Anzeigesysteme, welche Canvys als Full-Customizing-Lösung entwickelt und produziert.
Wir beraten Sie gerne, welche Lösung für Ihre Anwendung am geeignetsten ist.
Dentaltechnik — Behandlungseinheiten
Behandlungseinheiten im zahnmedizinischen Bereich
In einer Zahnarztpraxis treffen Behandlungseinheit, Zahnarzt, Zahnarzthelferin, Patient, Ausrüstung und der Behandlungsplan aufeinander und gehen ein komplexes Beziehungsgeflecht miteinander ein.
Behandlungseinheiten in zahnmedizinischen Bereichen werden entwickelt, um Patienten und Ärzten ein bestmögliches Behandlungs-Ergebnis und Erlebnis zu bieten. Qualität und Bedienungskomfort, Sicherheit und Patientenkomfort, Ergonomie Flexibilität und Kosteneffizienz. Diese Aspekte stehen bei der Entwicklung von zahnmedizinischen Behandlungseinheiten im Vordergrund.
Die Entwicklung dieser Behandlungseinheiten dauert in der Regel einige Jahre. Für die Hersteller bedeutet dies jahrelange Forschung, hohe Investitionen, Anmeldung von Patenten und Durchführung von notwendigen Zertifizierungen, bis die Behandlungseinheit letztendlich vermarktet werden kann.
Als Schnittstelle zwischen Mensch und „Maschine“ werden selbstverständlich Displays mit langlebiger Hardware eingesetzt. Canvys entwickelt kundenspezifische Monitorlösungen mit einer hochauflösenden Bildqualität, überzeugenden Kontrastwerten und brillanter Farbwiedergabe und entsprechenden Zertifizierungen für solche Behandlungseinheiten.
Integrierte Schutzgläser mit unterschiedlichen Entspiegelungsmöglichkeiten zur Reduzierung von Reflexionen an der Glasoberfläche ermöglichen ein einwandfreies Reinigen des Displays mit Desinfektionsmitteln. Alternativ ermöglicht die benutzerfreundliche Benutzeroberfläche über Touchscreens effiziente Arbeitsabläufe. So können z.B. Röntgenbilder, intraorale Aufnahmen und Planungsansichten vom Arzt direkt an der Behandlungseinheit einfach aufgerufen und erklärt werden.
Zudem kann das Display über seine Signaleingänge mit allen Funktionalitäten von bildgebenden Geräten wie z.B. Kamera oder Mikroskop kombiniert werden. Kundenspezifische Anforderungen wie z.B. ein Bootlogo, hinterdrucktes Kundenlogo auf dem Schutzglas oder Touchscreen, und auch spezifische Anforderungen an das Material des Kunststoffgehäuses können umgesetzt werden.
Hinweis: Alle Anwendungsberichte sind Beispiele dafür, wie Kunden unsere Produkte als Komponenten in ihren Systemen einsetzen. Die Einhaltung gesetzlicher Vorschriften liegt im Ermessen des jeweiligen Kunden, der die volle Verantwortung übernimmt. Aufgrund weltweit unterschiedlicher regulatorischer Richtlinien kann die Klassifizierung von Land zu Land unterschiedlich sein. Canvys ist in der Lage, Ihnen eine auf Ihre individuellen Bedürfnisse zugeschnittene Lösung zu liefern, auch für höher klassifizierte Geräte.
Empfohlene Produkte/Plattformen für diese Anwendung
V SERIES MEDICAL MONITORS
15.6"
Medizinisches Display mit einem schlanken Gehäuse, wahlweise mit vollständig geschlossenem Gehäuse oder mit Lüftungsöffnungen.
Verfügbar im 16:9 Format.
- Helles Full HD-Panel für brillante Bilder
- Modernes True Flat Display für einfache Reinigung und Desinfektion
- DICOM® kompatibel
- Weiter Betrachtungswinkel
- Entspiegeltes oder mattes Glas
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
G SERIES MEDICAL MONITORS
21.5"
Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas.
Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
FULL-CUSTOMIZED-LÖSUNGEN
Canvys ist ein OEM/ODM-Hersteller. Um Ihnen kundenspezifische Display-Lösungen zu einem wettbewerbsfähigen Preis anbieten zu können, haben wir verschiedenen Plattformen entwickelt.
Diese dienen als Basis für vielfältige individuelle Lösungen, welche wir für Sie realisieren können.
Doch für gewisse Kunden/Anwendungsszenarien kommen diese Plattformen nicht in Frage. Sie benötigen einzigartige Anzeigesysteme, welche Canvys als Full-Customizing-Lösung entwickelt und produziert.
Wir beraten Sie gerne, welche Lösung für Ihre Anwendung am geeignetsten ist.
Endoskopie – Medizinische Bildgebung
Medizinische Bildgebung in der Endoskopie
In der Endoskopie macht die Bildqualität den Unterschied. Das klare Erkennen von empfindlichen Strukturen selbst unter schwierigsten Bedingungen hat entscheidenden Einfluss auf den medizinischen Eingriff. Die Voraussetzung für eine sichere Behandlung bzw. Therapie ist ein klares, aussagekräftiges Bild.
Systemlieferanten im Endoskopiebereich beherrschen meistens die gesamte Bildkette vom Endoskop bis zur digitalen Übermittlung, Darstellung und Speicherung der entstandenen Bilder. Qualität, Bedienungskomfort, Sicherheit, Patientenkomfort, Ergonomie und Flexibilität. Diese Aspekte stehen bei der Entwicklung von endoskopischen Systemen im Vordergrund. Für die Hersteller bedeutet dies jahrelange Forschung, hohe Investitionen, Anmeldung von Patenten und Durchführung von notwendigen Zertifizierungen, bis solche Systeme letztendlich vermarktet werden können.
Zur Darstellung und Verwaltung der endoskopisch entstandenen Bilder werden selbstverständlich Displays eingesetzt. Canvys bietet speziell auch für preissensitive Märkte Monitorlösungen mit einer hervorragenden Bildqualität im Bezug auf Helligkeit, Kontrast und Farbtreue mit langlebiger Hardware an. Integrierte Schutzgläser mit unterschiedlichen Entspiegelungsmöglichkeiten zur Reduzierung von Reflexionen an der Glasoberfläche ermöglichen ein einwandfreies Reinigen des Displays mit Desinfektionsmitteln.
Das moderne und flache Design der Displays mit integrierter Kabelabdeckung und entsprechenden Zertifizierungen lässt sich problemlos in das Systemdesign integrieren. Spezielle Signaleingänge wie z.B. 12G-SDI unterstützen die Verarbeitung von digitalen Videosignalen, Presettings gemäß Spezifikation der Systemhersteller können ebenfalls im Display hinterlegt werden.
Kundenspezifische Anforderungen wie z.B. ein Bootlogo, hinterdrucktes Kundenlogo auf dem Schutzglas oder dem Touchscreen, und auch spezifische Anforderungen an das Material des Kunststoffgehäuses können umgesetzt werden.
Hinweis: Alle Anwendungsberichte sind Beispiele dafür, wie Kunden unsere Produkte als Komponenten in ihren Systemen einsetzen. Die Einhaltung gesetzlicher Vorschriften liegt im Ermessen des jeweiligen Kunden, der die volle Verantwortung übernimmt. Aufgrund weltweit unterschiedlicher regulatorischer Richtlinien kann die Klassifizierung von Land zu Land unterschiedlich sein. Canvys ist in der Lage, Ihnen eine auf Ihre individuellen Bedürfnisse zugeschnittene Lösung zu liefern, auch für höher klassifizierte Geräte.
Empfohlene Produkte/Plattformen für diese Anwendung
G SERIES MEDICAL MONITORS
21.5"
Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas.
Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
4K SERIES MEDICAL MONITORS
27"
Medizinische 4K-Displays mit UHD-Auflösung und High-Brightness-Panels für qualitativ hochwertige und helle Bilder.
Verfügbar im 16:9 Format.
- 4K-Ultra HD-Panel mit AHVA / AMVA3-Technologie
- Hohe Auflösung und hohe Helligkeit
- Hohe Farbraumabdeckung von bis zu 100 % sRGB
- Picture-in-Picture und Picture-by-Picture Mode
- DIN6868-157 kompatibel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhe
4K SERIES MEDICAL MONITORS
32"
Medizinische 4K-Displays mit UHD-Auflösung und High-Brightness-Panels für qualitativ hochwertige und helle Bilder.
Verfügbar im 16:9 Format.
- 4K-Ultra HD-Panel mit AHVA / AMVA3-Technologie
- Hohe Auflösung und hohe Helligkeit
- Hohe Farbraumabdeckung von bis zu 100 % sRGB
- Picture-in-Picture und Picture-by-Picture Mode
- DIN6868-157 kompatibel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhe
Ophthalmologie (Augenheilkunde)
Refraktive Augen-Laser für Ophthalmologie
In der modernen Hornhautchirurgie geht es um eine sehr präzise Steuerung eines Femtosekundenlaser, um mit einem minimalen Eingriff, eine möglichst optimale Hornhautkorrektur zu erzielen. Ein innovatives Femtosekundenlasersystem vereint perfekt aufeinander abgestimmte Komponenten und bietet ein Höchstmaß an Schnittpräzision, Effizienz und späterem Komfort für den zu behandelnden Patienten. Nur so kann ein geringes Risiko von Infektionen, Epitheleinwachsungen und Flapkomplikationen sichergestellt werden.
Bis alle Hürden in Bezug auf Design, Systemspezifikationen und auch weltweite Zulassungen genommen sind, dauert die Entwicklung eines solchen Systems bis zu 5 Jahre.
Bei einem Femtosekundenlasersystem werden in der Regel zwei Displays mit verschiedenen Anforderungen benötigt.
Das Behandlungsdisplay sollte über eine möglichst hohe Auflösung und einen großen Blickwinkel verfügen, das Ganze bei hoher Helligkeit und Kontrastwerten. Dies ermöglicht ein hochqualitatives Videobild, welches dem Operateur während des automatisierten Eingriffes zur Kontrolle steht. Zur Steuerung der Einheit wird ein Multitouch basierend auf der PCAP-Touch-Technologie eingesetzt, welcher die Bedienung mit OP-Handschuhen ermöglicht und zusätzlich noch weitere Funktionalität durch die Gestensteuerung mit einbringt.
Beim Planungs- oder Beobachtungsdisplay werden größere Displaydiagonalen eingesetzt. Auch hier ermöglicht die anwenderfreundliche Benutzeroberfläche durch den Touchscreen effiziente Arbeitsabläufe. So können z.B. Patientendaten, Dokumentationen, Planungsansichten vom Arzt sowie die Bedienung der Medizingeräte einfach abgerufen und gesteuert werden.
Integrierte Schutzgläser mit unterschiedlichen Entspiegelungsmöglichkeiten zur Reduzierung von Reflexionen an der Glasoberfläche ermöglichen ein einwandfreies Reinigen des Displays mit Desinfektionsmitteln.
Das ergonomische Design der Displays mit integrierter Kabelabdeckung lässt sich problemlos über die VESA-Schnittstelle an bestehende Tragarme im OP einbinden.
Kundenspezifische Anforderungen wie z.B. ein Bootlogo, hinterdrucktes Kundenlogo auf dem Schutzglas oder Touchscreen sowie spezielle Anforderungen an das Material des Kunststoffgehäuses können ebenfalls umgesetzt werden.
Hinweis: Alle Anwendungsberichte sind Beispiele dafür, wie Kunden unsere Produkte als Komponenten in ihren Systemen einsetzen. Die Einhaltung gesetzlicher Vorschriften liegt im Ermessen des jeweiligen Kunden, der die volle Verantwortung übernimmt. Aufgrund weltweit unterschiedlicher regulatorischer Richtlinien kann die Klassifizierung von Land zu Land unterschiedlich sein. Canvys ist in der Lage, Ihnen eine auf Ihre individuellen Bedürfnisse zugeschnittene Lösung zu liefern, auch für höher klassifizierte Geräte.
Empfohlene Produkte/Plattformen für diese Anwendung
V SERIES MEDICAL MONITORS
15.6"
Medizinisches Display mit einem schlanken Gehäuse, wahlweise mit vollständig geschlossenem Gehäuse oder mit Lüftungsöffnungen.
Verfügbar im 16:9 Format.
- Helles Full HD-Panel für brillante Bilder
- Modernes True Flat Display für einfache Reinigung und Desinfektion
- DICOM® kompatibel
- Weiter Betrachtungswinkel
- Entspiegeltes oder mattes Glas
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
G SERIES MEDICAL MONITORS
21.5"
Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas.
Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
G SERIES MEDICAL MONITORS
23.8"
Medizinische Displays mit einem schlanken und vollständig geschlossenen Gehäuse ohne Lüftungsöffnungen und OSD-Touch-Tasten auf Frontglas.
Verfügbar im 16:9 Format.
- Full-HD-Panel mit IPS-Technologie
- DICOM® kompatibel
- Auto Luminance System und Kalibrierungsmodus
- Weiter Blickwinkel
- PCAP Multi-Touch-Sensor mit 10-Punkt-Technologie, bedienbar mit Fingern oder Latexhandschuhen
- All-in-One-Version im gleichen Gehäuse
Gefäßchirurgie/Vaskularchirurgie
Bildgesteuertes Therapiegerät für die Gefäßchirurgie
Koronare Bildgebungstechnologien spielen eine wichtige Rolle bei der Diagnose von Gefäßerkrankungen, eine der häufigsten Todesursachen bei Männern und Frauen. Diese Geräte unterstützen Kardiologen, Herz-Thorax-Chirurgen und Gefäßchirurgen bei der Behandlung, Planung und Durchführung operativer Eingriffe.
In diesem Fall ist unser Kunde ein führendes Unternehmen im Bereich der Gefäßbehandlung, das sich auf die Gesundheitsvorsorge konzentriert. Über das gesamte Gesundheitswesen hinweg verfolgt diese Firma das Ziel, in jedem einzelnen Teilbereich stetige Verbesserungen zu erreichen: Angefangen bei einer gesunden Lebensweise über die Prävention bis hin zur Diagnose, Behandlung und häuslichen Pflege.
Das Unternehmen stellt ein Lasersystem mit Einwegkathetern zur Behandlung von peripheren und koronaren Arterienerkrankungen her. Das System nutzt die Photoablation (die Verwendung von Licht, um Materie aufzubrechen, zu verdampfen und zu entfernen), um festsitzende Arterienablagerungen zu entfernen.
Die Entwicklung dieser Display-Lösung wurde als Versuch initiiert, das Design des Monitors als Teil der "Next-Gen"-Produktversion des Kunden zu verbessern.
Die Absicht war es, eine Benutzerschnittstelle zu schaffen, die den mechanischen Anforderungen entspricht und gleichzeitig die medizinischen Zertifizierungen in einer langlebigen Lösung erfüllt. Canvys wurde als Display-Experte beauftragt und war eng in die Designbemühungen für das HMI und die baulichen Optimierungen eingebunden. Die Projektverantwortung umfasste das Durchführen der Machbarkeitsstudie, die funktionale Prototypenentwicklung, die Designverifizierung und letztlich die Produktionsfreigabe.
Während der gesamten Programmentwicklung arbeiteten der Kunde, die Technik, das Programmmanagement und das Vertriebsteam von Canvys zusammen, um die entsprechenden HMI-Parameter und Produktmerkmale zu entwickeln. Canvys nutzte bestehende und kundenspezifische Designs, um eine robuste, langfristige Lösung zu entwickeln, die problemlos implementiert und von den Aufsichtsbehörden genehmigt werden konnte. Der Kunde entschied sich schließlich dafür, Canvys mit der kompletten Stücklistenbeschaffung und Fertigung in seinem ISO13485-zertifizierten Werk in Marlborough (Massachusetts, USA) zu beauftragen. Es sollte schließlich eine kundenspezifische Displaylösung „aus einer Hand" werden.
Hinweis: Alle Anwendungsberichte sind Beispiele dafür, wie Kunden unsere Produkte als Komponenten in ihren Systemen einsetzen. Die Einhaltung gesetzlicher Vorschriften liegt im Ermessen des jeweiligen Kunden, der die volle Verantwortung übernimmt. Aufgrund weltweit unterschiedlicher regulatorischer Richtlinien kann die Klassifizierung von Land zu Land unterschiedlich sein. Canvys ist in der Lage, Ihnen eine auf Ihre individuellen Bedürfnisse zugeschnittene Lösung zu liefern, auch für höher klassifizierte Geräte.
Empfohlene Produkte/Plattformen für diese Anwendung
FULL-CUSTOMIZED-LÖSUNGEN
Canvys ist ein OEM/ODM-Hersteller. Um Ihnen kundenspezifische Display-Lösungen zu einem wettbewerbsfähigen Preis anbieten zu können, haben wir verschiedenen Plattformen entwickelt.
Diese dienen als Basis für vielfältige individuelle Lösungen, welche wir für Sie realisieren können.
Doch für gewisse Kunden/Anwendungsszenarien kommen diese Plattformen nicht in Frage. Sie benötigen einzigartige Anzeigesysteme, welche Canvys als Full-Customizing-Lösung entwickelt und produziert.
Wir beraten Sie gerne, welche Lösung für Ihre Anwendung am geeignetsten ist.
Produktblätter / Broschüren laden
Produktblatt: G Serie Medical Version
2.01 MB